Skip to Content
MilliporeSigma
  • Bottlebrush-like highly efficient antibacterial coating constructed using α-helical peptide dendritic polymers on the poly(styrene-b-(ethylene-co-butylene)-b-styrene) surface.

Bottlebrush-like highly efficient antibacterial coating constructed using α-helical peptide dendritic polymers on the poly(styrene-b-(ethylene-co-butylene)-b-styrene) surface.

Journal of materials chemistry. B (2020-07-15)
Yujia Zhang, Ke Kang, Nanhang Zhu, Guohao Li, Xiaoxi Zhou, Aimin Zhang, Qiangying Yi, Yao Wu
ABSTRACT

Infectious diseases induced by pathogenic bacteria are the major causes for the failure of medical implants. Meanwhile, the drug-resistance is steadily developed because of the large and even inappropriate use of antibiotics. Therefore, the development of antibacterial coating with non-antibiotic-based agents on the surfaces of medical implants and devices has been an urgent need. Herein, we propose a bottlebrush-like antibacterial coating on a poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) triblock copolymer surface by UV-induced graft polymerization of poly(ethylene glycol) (PEG) acrylate terminated poly(lysine dendrimer). This PEG-conjugated antibacterial polymer possessed a substructure of α-helical backbone and cation dendrimer side chains stretching in the radial directions of the helix. The introduction of lysine peptide dendrimers endowed the prepared antibacterial polymer with precisely controlled characteristics of its local cation density, amphipathic composition as well as three-dimensional (3D) conformation to improve interactions with bacterial membranes. The antimicrobial assay and biocompatibility assay results showed that 96.83% of S. aureus and 99.99% of E. coli were killed after being in contact with the antibacterial coating, while no toxicity to mammalian cells or no hemolysis was detected. This antimicrobial activity was further confirmed by the molecular dynamics simulation results, which demonstrated that the employment of lysine peptide dendrimers enhanced the electrostatic interaction and hydrogen bonding between the brush and bacterial membranes remarkably. Such bottlebrush-like antibacterial coating constructed using α-helical peptide dendritic polymers may become an effective strategy for manufacturing antibacterial products for biomedical uses.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Lysine methyl ester dihydrochloride
Sigma-Aldrich
Boc-Lys(Boc)-OH, AldrichCPR