Skip to Content
MilliporeSigma
All Photos(2)

Documents

901464

Sigma-Aldrich

2,2′-Bi-1,3,2-dioxaborinane

greener alternative

≥95%

Synonym(s):

B2(pro)2, Propanediol diboron

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
C6H12B2O4
CAS Number:
Molecular Weight:
169.78
MDL number:
UNSPSC Code:
12352200
NACRES:
NA.22

Quality Level

Assay

≥95%

form

powder or crystals

greener alternative product characteristics

Catalysis
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

mp

156 °C

greener alternative category

storage temp.

−20°C

InChI

1S/C6H12B2O4/c1-3-9-7(10-4-1)8-11-5-2-6-12-8/h1-6H2

InChI key

FOGDFVUQHQEIPV-UHFFFAOYSA-N

General description

We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced to increase catalytic efficiency. Click here for more information.

Application

As reported by the laboratory of James Morken, B2(pro)2 is an effective reagent for enantioselective diboration of alkenes when used in conjunction with the carbohydrate-derived catalysts TBS-DHG (901235) or DHR (901237). Useful for synthesis of other boron-containing molecules.

related product

Product No.
Description
Pricing

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Lu Yan et al.
Journal of the American Chemical Society, 140(10), 3663-3673 (2018-02-15)
A mechanistic investigation of the carbohydrate/DBU cocatalyzed enantioselective diboration of alkenes is presented. These studies provide an understanding of the origin of stereoselectivity and also reveal a strategy for enhancing reactivity and broadening the substrate scope.

Related Content

Chiral organoboronic esters are well known as versatile intermediates for chemical synthesis. Not only are these compounds stable under a variety of reaction conditions, they are generally non-toxic and can be transformed with minimal generation of hazardous waste.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service