Saltar al contenido
Merck
  • Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry.

Comparison of hollow fiber liquid-phase microextraction and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction for the determination of drugs of abuse in biological samples by gas chromatography-mass spectrometry.

Journal of chromatography. B, Analytical technologies in the biomedical and life sciences (2015-03-25)
Liang Meng, Wenwen Zhang, Pinjia Meng, Binling Zhu, Kefang Zheng
RESUMEN

Two microextraction techniques based on hollow fiber liquid-phase microextraction (HF-LPME) and ultrasound-assisted low-density solvent dispersive liquid-liquid microextraction (UA-LDS-DLLME) had been applied for the determination of drugs of abuse (methamphetamine, amphetamine, 3,4-methylenedioxymethamphetamine, 3,4-methylenedioxyamphetamine, methcathinone, ketamine, meperidine, and methadone) in urine and blood samples by gas chromatography-mass spectrometry. Parameters affecting extraction efficiency have been investigated and optimized for both methods. Under the optimum conditions, linearities were observed for all analytes in the range 0.0030-10 μg/ml with the correlation coefficient (R) ranging from 0.9985 to 0.9995 for HF-LPME and in the range 0.0030-10 μg/ml with the R ranging from 0.9985 to 0.9994 for DLLME. The recovery of 79.3-98.6% with RSDs of 1.2-4.5% was obtained for HF-LPME, and the recovery of 79.3-103.4% with RSDs of 2.4-5.7% was obtained for DLLME. The LODs (S/N=3) were estimated to be in the range from 0.5 to 5 ng/ml and 0.5 to 4 ng/ml, respectively. Compared with HF-LPME, the UA-LDS-DLLME technique had the advantages of less extraction time, suitability for batches of sample pretreatment simultaneously, and higher extraction efficiency, while HF-LPME has excellent sample clean-up effect, and is a robust and suitable technique for various sample matrices with better repeatability. Both methods were successfully applied to the analysis of drugs of abuse in real human blood sample.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Sigma-Aldrich
Hexano, suitable for HPLC, ≥97.0% (GC)
Sigma-Aldrich
Tolueno, suitable for HPLC, 99.9%
Sigma-Aldrich
Tolueno, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%
Sigma-Aldrich
Hexano, ReagentPlus®, ≥99%
Sigma-Aldrich
Hexano, suitable for HPLC, ≥95%
Sigma-Aldrich
Ciclohexano, ACS reagent, ≥99%
Sigma-Aldrich
Benceno, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Benceno, ACS reagent, ≥99.0%
Sigma-Aldrich
Ciclohexano, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Hexano, Laboratory Reagent, ≥95%
Sigma-Aldrich
Hexano, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99% (GC)
Sigma-Aldrich
Hexano, HPLC Plus, for HPLC, GC, and residue analysis, ≥95%
Sigma-Aldrich
o-Xylene, puriss. p.a., ≥99.0% (GC)
Sigma-Aldrich
Tolueno, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.7% (GC)
Sigma-Aldrich
Butyl acetate, ACS reagent, ≥99.5%
Sigma-Aldrich
Ciclohexano, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Octyl acetate, ≥99%
Sigma-Aldrich
o-Xylene, reagent grade, ≥98.0%
Sigma-Aldrich
Tolueno, anhydrous, 99.8%
Sigma-Aldrich
Ciclohexano, puriss. p.a., ACS reagent, ≥99.5% (GC)
Sigma-Aldrich
Butyl acetate, suitable for HPLC, 99.7%
Sigma-Aldrich
Benceno, puriss. p.a., reag. Ph. Eur., ≥99.7%
Sigma-Aldrich
Tolueno, ACS reagent, ≥99.5%
Supelco
Benceno, analytical standard
Sigma-Aldrich
Ciclohexano, Laboratory Reagent, ≥99.8%
Supelco
o-Xylene, suitable for HPLC, 98%
Sigma-Aldrich
Hexano, anhydrous, 95%
Sigma-Aldrich
Tolueno, Laboratory Reagent, ≥99.3%
Sigma-Aldrich
Benceno, anhydrous, 99.8%