Saltar al contenido
Merck

Temporally divergent regulatory mechanisms govern neuronal diversification and maturation in the mouse and marmoset neocortex.

Nature neuroscience (2022-08-02)
Wen Yuan, Sai Ma, Juliana R Brown, Kwanho Kim, Vanessa Murek, Lucia Trastulla, Alexander Meissner, Simona Lodato, Ashwin S Shetty, Joshua Z Levin, Jason D Buenrostro, Michael J Ziller, Paola Arlotta
RESUMEN

Mammalian neocortical neurons span one of the most diverse cell type spectra of any tissue. Cortical neurons are born during embryonic development, and their maturation extends into postnatal life. The regulatory strategies underlying progressive neuronal development and maturation remain unclear. Here we present an integrated single-cell epigenomic and transcriptional analysis of individual mouse and marmoset cortical neuron classes, spanning both early postmitotic stages of identity acquisition and later stages of neuronal plasticity and circuit integration. We found that, in both species, the regulatory strategies controlling early and late stages of pan-neuronal development diverge. Early postmitotic neurons use more widely shared and evolutionarily conserved molecular regulatory programs. In contrast, programs active during later neuronal maturation are more brain- and neuron-specific and more evolutionarily divergent. Our work uncovers a temporal shift in regulatory choices during neuronal diversification and maturation in both mice and marmosets, which likely reflects unique evolutionary constraints on distinct events of neuronal development in the neocortex.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Cóctel de inhibidores de proteasas, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
Suero de burro
Sigma-Aldrich
Fluoruro de fenilmetansulfonilo, ≥99.0% (T)
Sigma-Aldrich
L-Cysteine hydrochloride, anhydrous, from non-animal source, BioReagent, suitable for cell culture, ≥98.0%
Sigma-Aldrich
DL-2-Amino-5-phosphonopentanoic acid, solid