Saltar al contenido
Merck
  • Harmine alleviates atherogenesis by inhibiting disturbed flow-mediated endothelial activation via protein tyrosine phosphatase PTPN14 and YAP.

Harmine alleviates atherogenesis by inhibiting disturbed flow-mediated endothelial activation via protein tyrosine phosphatase PTPN14 and YAP.

British journal of pharmacology (2021-01-22)
Yujie Yang, Qiannan Ma, Zhiyu Li, Hui Wang, Chenghu Zhang, Yajin Liu, Bochuan Li, Yingmei Wang, Qinghua Cui, Fengxia Xue, Ding Ai, Yi Zhu, Jinlong He
RESUMEN

Disturbed flow induces endothelial dysfunction and contributes to uneven distribution of atherosclerotic plaque. Emerging evidence suggests that harmine, a natural constituent of extracts of Peganum harmala, has potent beneficial activities. Here, we investigated if harmine has an atheroprotective role under disturbed flow and the underlying mechanism. Mice of ApoE-/- , LDLR-/- , and endothelial cell (EC)-specific overexpression of yes-associated protein (YAP) in ApoE-/- background were fed with a Western diet and given harmine for 4 weeks. Atherosclerotic lesion size, cellular composition, and expression of inflammatory genes in the aortic roots were assessed. HUVECs were treated with oscillatory shear stress (OSS) and harmine and also used for proteomic analysis. Harmine retarded atherogenesis in both ApoE-/- and LDLR-/- mice by inhibiting the endothelial inflammatory response. Mechanistically, harmine blocked OSS-induced YAP nuclear translocation and EC activation by reducing phosphorylation of YAP at Y357. Overexpression of endothelial YAP blunted the beneficial effects of harmine in mice. Proteomic study revealed that protein tyrosine phosphatase non-receptor type 14 (PTPN14) could bind to YAP. Moreover, harmine increased PTPN14 expression by stabilizing its protein level and inhibiting its degradation in proteasomes. PTPN14 knockdown blocked the effects of harmine on YAPY357 and EC activation. Finally, overexpression of PTPN14 mimicked the effects of harmine and ameliorated atherosclerosis, and knockdown of PTPN14 blunted the atheroprotective effects of harmine and accelerated atherosclerosis, in a partial ligation mouse model. Harmine alleviated OSS-induced EC activation via a PTPN14/YAPY357 pathway and had a potent atheroprotective role.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Z-Leu-Leu-Leu-al, ≥90% (HPLC)
Sigma-Aldrich
(Tyr[SO3H]27)Cholecystokinin fragment 26-33 Amide, ≥97% (HPLC), powder
Sigma-Aldrich
Bosutinib, ≥98% (HPLC)
Sigma-Aldrich
3-(Biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, 97%
Sigma-Aldrich
MISSION® esiRNA, targeting human PTPN14