Saltar al contenido
Merck

3D printable tough silicone double networks.

Nature communications (2020-08-12)
Thomas J Wallin, Leif-Erik Simonsen, Wenyang Pan, Kaiyang Wang, Emmanuel Giannelis, Robert F Shepherd, Yiğit Mengüç
RESUMEN

Additive manufacturing permits innovative soft device architectures with micron resolution. The processing requirements, however, restrict the available materials, and joining chemically dissimilar components remains a challenge. Here we report silicone double networks (SilDNs) that participate in orthogonal crosslinking mechanisms-photocurable thiol-ene reactions and condensation reactions-to exercise independent control over both the shape forming process (3D printing) and final mechanical properties. SilDNs simultaneously possess low elastic modulus (E100% < 700kPa) as well as large ultimate strains (dL/L0 up to ~ 400 %), toughnesses (U ~ 1.4 MJ·m-3), and strengths (σ ~ 1 MPa). Importantly, the latent condensation reaction permits cohesive bonding of printed objects to dissimilar substrates with modulus gradients that span more than seven orders of magnitude. We demonstrate soft devices relevant to a broad range of disciplines: models that simulate the geometries and mechanical properties of soft tissue systems and multimaterial assemblies for next generation wearable devices and robotics.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
3-(Trimethoxysilyl)propyl acrylate, 92%, contains 100 ppm BHT as inhibitor
Sigma-Aldrich
Pyrvinium pamoate salt hydrate, ≥98% (HPLC)