Skip to Content
Merck

Study of light-induced MscL gating by EPR spectroscopy.

European biophysics journal : EBJ (2015-08-20)
Duygu Yilmaz, Anna I Dimitrova, Martin Walko, Armagan Kocer
ABSTRACT

A number of techniques developed to investigate protein structure and function depend on chemically modifying and/or labeling of proteins. However, in the case of homooligomeric proteins, the presence of multiple identical subunits obstructs the introduction of residue-specific labels to only one or several subunits, selectively. Here, in order to study the initial conformational changes of a homopentameric mechanosensitive ion channel during its gating, we developed a method for labeling a defined number of subunits of the channel with two different cysteine-specific compounds simultaneously. The first one is a light-sensitive channel activator that determines the degree of openness of the ion channel upon irradiation. The second one is a spin label, containing an unpaired electron, which allows following the resulting structural changes upon channel gating by electron paramagnetic resonance spectroscopy. With this method, we could open MscL into different sub-open states. As the number of light switches per channel increased, the intersubunit spin-spin interactions became less, indicating changes in intersubunit proximities and opening of the channel. The ability of controlled activation of MscL into different open states with a noninvasive trigger and following the resulting conformational changes by spectroscopy will pave the way for detailed spectroscopic studies in the area of mechanosensation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Acetic acid, natural, ≥99.5%, FG
Sigma-Aldrich
Acetic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
BIS-TRIS, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
DL-Norleucine
Sigma-Aldrich
BIS-TRIS, BioXtra, ≥98.0% (titration)
Sigma-Aldrich
Tricine, BioXtra, pH 4.0-6.0 (1 M in H2O), ≥99% (titration)
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99%
Sigma-Aldrich
Acrylamide, for molecular biology, ≥99% (HPLC)
Sigma-Aldrich
Tricine, ≥99% (titration)
Sigma-Aldrich
Tricine, BioPerformance Certified, suitable for cell culture, ≥99% (titration)
Sigma-Aldrich
Acrylamide, suitable for electrophoresis, ≥99% (HPLC), powder
Sigma-Aldrich
BIS-TRIS, ≥98.0% (titration)
Sigma-Aldrich
BIS-TRIS, BioPerformance Certified, suitable for cell culture, suitable for insect cell culture, ≥98.0%
Sigma-Aldrich
Acetic acid, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Acetic acid-12C2, 99.9 atom % 12C
Sigma-Aldrich
Methanol, NMR reference standard
SAFC
BIS-TRIS
SAFC
BIS-TRIS
SAFC
Tricine
Sigma-Aldrich
Potassium phosphate monobasic, 99.99% trace metals basis
Sigma-Aldrich
Methanol-12C, 99.95 atom % 12C
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Sigma-Aldrich
Potassium phosphate dibasic, anhydrous, for luminescence, for molecular biology, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Potassium phosphate dibasic, 99.95% trace metals basis
Sigma-Aldrich
Potassium phosphate monobasic, BioUltra, for molecular biology, anhydrous, ≥99.5% (T)
Sigma-Aldrich
DL-Cysteine, technical grade
Sigma-Aldrich
Potassium phosphate dibasic, meets USP testing specifications
Sigma-Aldrich
Potassium phosphate dibasic, reagent grade, ≥98.0%
Sigma-Aldrich
Potassium phosphate monobasic, powder, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.0%