Skip to Content
Merck
  • Benzyl alcohol attenuates acetaminophen-induced acute liver injury in a Toll-like receptor-4-dependent pattern in mice.

Benzyl alcohol attenuates acetaminophen-induced acute liver injury in a Toll-like receptor-4-dependent pattern in mice.

Hepatology (Baltimore, Md.) (2014-05-07)
Changchun Cai, Hai Huang, Sean Whelan, Li Liu, Benjamin Kautza, Jason Luciano, Guoliang Wang, Guoqiang Chen, Sladjana Stratimirovic, Allan Tsung, Timothy R Billiar, Brian S Zuckerbraun
ABSTRACT

Acetaminophen (APAP) toxicity is the most common cause of acute liver failure in industrialized countries. Understanding the mechanisms of APAP-induced liver injury as well as other forms of sterile liver injury is critical to improve the care of patients. Recent studies demonstrate that danger signaling and inflammasome activation play a role in APAP-induced injury. The aim of these investigations was to test the hypothesis that benzyl alcohol (BA) is a therapeutic agent that protects against APAP-induced liver injury by modulation of danger signaling. APAP-induced liver injury was dependent, in part, on Toll-like receptor (TLR)9 and receptor for advanced glycation endproducts (RAGE) signaling. BA limited liver injury over a dose range of 135-540 μg/g body weight or when delivered as a pre-, concurrent, or post-APAP therapeutic. Furthermore, BA abrogated APAP-induced cytokines and chemokines as well as high-mobility group box 1 release. Moreover, BA prevented APAP-induced inflammasome signaling as determined by interleukin (IL)-1β, IL-18, and caspase-1 cleavage in liver tissues. Interestingly, the protective effects of BA on limiting liver injury and inflammasome activation were dependent on TLR4 signaling, but not TLR2 or CD14. Cell-type-specific knockouts of TLR4 were utilized to further determine the protective mechanisms of BA. These studies found that TLR4 expression specifically in myeloid cells (LyzCre-tlr4-/-) were necessary for the protective effects of BA. BA protects against APAP-induced acute liver injury and reduced inflammasome activation in a TLR4-dependent manner. BA may prove to be a useful adjunct in the treatment of APAP and other forms of sterile liver injury.

MATERIALS
Product Number
Brand
Product Description

Supelco
Glycyrrhizic acid ammonium salt, analytical standard, suitable for HPLC
Alanine, European Pharmacopoeia (EP) Reference Standard
Paracetamol, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Pyrazole, 98%
Sigma-Aldrich
Glycyrrhizic acid ammonium salt from glycyrrhiza root (licorice), ≥95.0% (NT)
Sigma-Aldrich
Glycyrrhizic acid ammonium salt from glycyrrhiza root (licorice), ≥70% (HPLC)
Sigma-Aldrich
L-Glutathione oxidized disodium salt, ≥98%, powder
Sigma-Aldrich
L-Glutathione oxidized disodium salt, BioReagent, suitable for cell culture
Supelco
Glutathione, Pharmaceutical Secondary Standard; Certified Reference Material
Ammonium glycyrrhizate, European Pharmacopoeia (EP) Reference Standard
Glutathione, European Pharmacopoeia (EP) Reference Standard
Supelco
Acetaminophen, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
DL-Alanine, ≥99%, FCC, FG
Sigma-Aldrich
Acetaminophen, BioXtra, ≥99.0%
Sigma-Aldrich
L-Glutathione oxidized, lyophilized powder
Sigma-Aldrich
L-Glutathione oxidized, BioXtra, ≥98%
Sigma-Aldrich
L-Glutathione oxidized, ≥98% (HPLC)
Sigma-Aldrich
L-Glutathione reduced, ≥98.0%
Sigma-Aldrich
L-Glutathione reduced, BioXtra, ≥98.0%
Sigma-Aldrich
Acetaminophen, analytical standard
Sigma-Aldrich
Acetaminophen, meets USP testing specifications, 98.0-102.0%, powder
Sigma-Aldrich
L-Glutathione reduced, suitable for cell culture, BioReagent, ≥98.0%, powder
USP
Acetaminophen, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
DL-Alanine, ≥99% (HPLC)
SAFC
L-Glutathione oxidized
Glycyrrhizate monoammonium, European Pharmacopoeia (EP) Reference Standard