Current medicinal chemistry, 17(31), 3643-3657 (2010-09-18)
The discovery of the involvement of nitric oxide (NO) in several physiological and pathophysiological processes launched a spectacular increase in studies in areas such as chemistry, biochemistry, and pharmacology. As a consequence, the development of NO donors or scavengers for
Interest in Ru anticancer drugs has been growing rapidly since NAMI-A ((ImH(+))[Ru(III)Cl(4)(Im)(S-dmso)], where Im = imidazole and S-dmso = S-bound dimethylsulfoxide) or KP1019 ((IndH(+))[Ru(III)Cl(4)(Ind)(2)], where Ind = indazole) have successfully completed phase I clinical trials and an array of other
Chemical Society reviews, 41(8), 3179-3192 (2012-02-09)
In the last few decades, coordination complexes based on d(6) metal centres and polypyridyl ligand architectures been developed as structure- and site-specific reversible DNA binding agents. Due to their attractive photophysical properties, much of this research has focused on complexes
Journal of inorganic biochemistry, 106(1), 90-99 (2011-11-25)
The study of metal complexes for the treatment of cancer diseases has resulted in the identification of some unique properties of ruthenium-based compounds. Among these inorganic-based agents, two of them, namely the ruthenium(III) drugs NAMI-A and KP1019 have undertaken with
Accounts of chemical research, 44(4), 289-298 (2011-03-03)
Nitric oxide (NO) can induce apoptosis (programmed cell death) at micromolar or higher doses. Although cell death via NO-induced apoptosis has been studied quite extensively, the targeted delivery of such doses of NO to infected or malignant tissues has not
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.