Skip to Content
Merck
  • Decreased plasma iron in Alzheimer's disease is due to transferrin desaturation.

Decreased plasma iron in Alzheimer's disease is due to transferrin desaturation.

ACS chemical neuroscience (2015-01-15)
Dominic J Hare, James D Doecke, Noel G Faux, Alan Rembach, Irene Volitakis, Christopher J Fowler, Rudolf Grimm, Philip A Doble, Robert A Cherny, Colin L Masters, Ashley I Bush, Blaine R Roberts
ABSTRACT

Plasma iron levels are decreased in Alzheimer's disease (AD) and associated with an idiopathic anemia. We examined iron-binding plasma proteins from AD patients and healthy controls from the Australian Imaging, Biomarkers and Lifestyle (AIBL) Flagship Study of Ageing using size exclusion chromatography-inductively coupled plasma-mass spectrometry. Peak area corresponding to transferrin (Tf) saturation was directly compared to routine pathological testing. We found a significant decrease in transferrin-associated iron in AD that was missed by routine pathological tests of transferrin saturation, and that was able to discriminate between AD and controls. The AD cases showed no significant difference in transferrin concentration, only a decrease in total transferrin-bound iron. These findings support that a previously identified decrease in plasma iron levels in AD patients within the AIBL study is attributable to decreased loading of iron into transferrin, and that this subtle but discriminatory change is not observed through routine pathological testing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ammonium acetate solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Ammonium acetate, 99.999% trace metals basis
Sigma-Aldrich
Ammonium acetate, BioUltra, for molecular biology, ≥99.0%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Ammonium acetate, for molecular biology, ≥98%
Sigma-Aldrich
Ammonium acetate, reagent grade, ≥98%
Sigma-Aldrich
Ammonium acetate, BioXtra, ≥98%
Supelco
Ammonium acetate, LiChropur, eluent additive for LC-MS
Sigma-Aldrich
Ammonium acetate, ≥99.99% trace metals basis
Sigma-Aldrich
Ammonium acetate, ACS reagent, ≥97%
Sigma-Aldrich
Ammonium hydroxide solution, BioUltra, ~1 M NH3 in H2O (T)
Sigma-Aldrich
Hydroxylamine solution, 50 wt. % in H2O
Sigma-Aldrich
Hydroxylamine solution, 50 wt. % in H2O, 99.999%
Sigma-Aldrich
Ammonium hydroxide solution, ACS reagent, 28.0-30.0% NH3 basis
Sigma-Aldrich
Ammonium hydroxide solution, puriss., 30-33% NH3 in H2O
Sigma-Aldrich
Ammonium hydroxide solution, puriss., meets analytical specification of Ph. Eur., 25-30% NH3 basis
Sigma-Aldrich
Ammonium hydroxide solution, puriss. p.a., reag. ISO, reag. Ph. Eur., ~25% NH3 basis
Sigma-Aldrich
Ammonium hydroxide solution, puriss. p.a. plus, ≥25% NH3 in H2O
Sigma-Aldrich
Ammonium hydroxide solution, 28% NH3 in H2O, ≥99.99% trace metals basis