Skip to Content
Merck
  • Synthesis and characterization of superparamagnetic CoFe2O4/MWCNT hybrids for tumor-targeted therapy.

Synthesis and characterization of superparamagnetic CoFe2O4/MWCNT hybrids for tumor-targeted therapy.

Journal of nanoscience and nanotechnology (2013-05-08)
Chuanyu Sun, Yong Liu, Weihong Ding, Yuancheng Gou, Ke Xu, Guowei Xia, Qiang Ding
ABSTRACT

Owing to their great potentialities of carbon nanotubes (CNTs)-based magnetic nano-composites, numerous applications of them have been found in nanotechnology, integrated functional system, and in medicine. Herein, nearly monodisperse CoFe2O4 nanoparticles have been deposited on multi-walled carbon nanotubes (MWCNTs) by high-temperature hydrolysis and inorganic polymerization of ionic Co(II) and Fe(III) salts and MWCNTs in a polyol solution. X-ray diffraction, energy-dispersive X-ray spectrometry and transmission electron microscopy were used to characterize the final products. The average size of CoFe2O4 nanoparticles and their coverage density on MWCNTs can be adjusted to some extent by altering the reaction parameters. A proposed formation mechanism of the magnetic hybrids is presented. Magnetic measurements showed that the hybrids were superparamagnetic at room temperature and their saturation magnetization could be fine tuned by changing the loading of CoFe2O4 nanoparticles on the MWCNTs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cobalt, Carbon coated magnetic, nanopowder, <50 nm particle size (TEM), ≥99%
Sigma-Aldrich
Cobalt, foil, thickness 0.1 mm, ≥99.99%
Sigma-Aldrich
Cobalt, granular, 99.99% trace metals basis
Sigma-Aldrich
Cobalt, wire, diam. 1.0 mm, 99.995% trace metals basis
Sigma-Aldrich
Cobalt, foil, thickness 0.1 mm, 99.95% trace metals basis
Sigma-Aldrich
Cobalt, powder, <150 μm, ≥99.9% trace metals basis
Sigma-Aldrich
Cobalt, foil, thickness 1.0 mm, 99.95% trace metals basis
Sigma-Aldrich
Cobalt, rod, diam. 5.0 mm, 99.95% trace metals basis
Sigma-Aldrich
Cobalt, pieces, 99.5% trace metals basis
Sigma-Aldrich
Cobalt, powder, 2 μm particle size, 99.8% trace metals basis
Sigma-Aldrich
Iron(III) oxide, powder, <5 μm, ≥96%
Sigma-Aldrich
Iron(III) oxide, ≥99.995% trace metals basis
Sigma-Aldrich
Iron(III) oxide, nanopowder, <50 nm particle size (BET)