Skip to Content
Merck
All Photos(3)

Key Documents

202509

Sigma-Aldrich

Poly(ethylene glycol) methyl ether

average Mn 2,000, methoxy, hydroxyl

Synonym(s):

Polyethylene glycol, Methoxy poly(ethylene glycol), Polyethylene glycol monomethyl ether, mPEG

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
CH3(OCH2CH2)nOH
CAS Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

Product Name

Poly(ethylene glycol) methyl ether, average Mn ~2,000

vapor density

>1 (vs air)

vapor pressure

0.05 mmHg ( 20 °C)

form

flakes (or pellets)

mol wt

average Mn ~2,000

viscosity

54.6 cSt(210 °F)(lit.)

transition temp

Tm 52 °C

functional group

hydroxyl

SMILES string

O(CCO)C

InChI

1S/C3H8O2/c1-5-3-2-4/h4H,2-3H2,1H3

InChI key

XNWFRZJHXBZDAG-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

General description

It is a Polyethylene glycol (PEG) macromer with a reactive chain end consisting of methyl ether. Etherification of the PEG chain ends can be undertaken in basic conditions by reacting it with alkyl halides. mPEG can undergo cross linking to form hydrogels; polymerization can be initiated by redox reaction or free radical initiator.

Application

Poly(ethylene glycol) methyl ether-attached dendrimers can be used as carriers for anticancer drugs. This novel drug carrier has a biocompatible surface and an interior for the encapsulation of drugs.

It can be used as a pore-forming agent in the preparation of ultrafiltration membranes which are used in the removal of macromolecules.

It can also be used as a starting material in the preparation of a biodegradable amphiphilic copolymer of poly(L-alanine) with mPEG.

Features and Benefits

Inserting poly(ethylene glycol) methyl ether (mPEG) side chain enhances the hydrophilicity and flexibility of the polymer matrix.

Storage Class Code

11 - Combustible Solids

WGK

WGK 1

Flash Point(F)

359.6 °F - closed cup

Flash Point(C)

182 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Customers Also Viewed

Slide 1 of 1

1 of 1

Pengxiang Zhao et al.
Chemical communications (Cambridge, England), 49(31), 3218-3220 (2013-03-14)
"Click" chemistry now offers access to a great variety of triazoles, and the first example of a strategy to stabilize gold nanoparticles (AuNPs) with a new 1,2,3-triazole-mPEG ligand is developed here together with preliminary examples of possible applications.
Mulu Z Tesfay et al.
Journal of virology, 87(7), 3752-3759 (2013-01-18)
We are developing oncolytic vesicular stomatitis viruses (VSVs) for systemic treatment of multiple myeloma, an incurable malignancy of antibody-secreting plasma cells that are specifically localized in the bone marrow. One of the presumed advantages for using VSV as an oncolytic
Junming Li et al.
Journal of biomedical nanotechnology, 8(5), 809-817 (2012-08-15)
In this study, quercetin (QC) with cancer chemoprevention effect and anticancer potential was loaded into polymeric micelles of methoxy poly(ethylene glycol)-cholesterol conjugate (mPEG-Chol) in order to increase its water solubility. MPEG-Chol with lower critical micelle concentration (CMC) value (4.0 x
Seung-Young Lee et al.
Biomaterials, 34(2), 552-561 (2012-10-20)
Although targeted delivery mediated by ligand modified or tumor microenvironment sensitive nanocarriers has been extensively pursued for cancer chemotherapy, the efficiency is still limited by premature drug release after systemic administration. Herein we report a highly blood-stable, tumor-adaptable drug carrier
De-Hao Tsai et al.
Analytical and bioanalytical chemistry, 404(10), 3015-3023 (2012-10-30)
Dithiothreitol (DTT)-based displacement is widely utilized for separating ligands from their gold nanoparticle (AuNP) conjugates, a critical step for differentiating and quantifying surface-bound functional ligands and therefore the effective surface density of these species on nanoparticle-based therapeutics and other functional

Articles

Biofouling control essential for device performance and safety; minimize accumulation of biomolecules and bioorganisms.

Biofouling control essential for device performance and safety; minimize accumulation of biomolecules and bioorganisms.

Biofouling control essential for device performance and safety; minimize accumulation of biomolecules and bioorganisms.

Biofouling control essential for device performance and safety; minimize accumulation of biomolecules and bioorganisms.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service