

MONOCLONAL ANTI-HUMAN INTERLEUKIN-2 SOLUBLE RECEPTOR γ (IL-2 sR γ) CLONE 38024.11 Purified Mouse Immunoglobulin

Product Number 15902

ProductInformation

Product Description

Monoclonal Anti-Human Interleukin-2 Soluble Receptor gamma (IL-2 sRγ) (mouse IgG1 isotype) is derived from the 38024.11 hybridoma produced by the fusion of mouse myeloma cells and splenocytes from a mouse immunized with a mouse cell line transfected with human IL-2 sRγ. The antibody is purified from ascites fluid using protein G chromatography.

Monoclonal Anti-Human IL-2 sR γ will be used to block the biological activity mediated by IL-2. By ELISA, the antibody does not cross-react with recombinant human IL-2 R α , IL-2 R β , IL-1 RI, IL-1 RII, IL-4 R , IL-6 R, IL-7 R and IL-10 R.

Monoclonal Anti-Human IL-2 sR γ may be used for neutralization of the biological activity mediated by IL-2 R γ and the detection of IL-2 R γ by immunoblotting and ELISA.

The biological effects of IL-2R signals are much more complex than simply mediating T-cell growth. Depending on the set of conditions, IL-2R signals may also promote cell survival, effector function, and apoptosis. These sometimes contradictory effects underscore the fact that a diversity of intracellular signaling pathways are potentially activated by IL-2R. There are at least 3 components of the IL-2 receptor, IL-2 Rα, IL-2 βR, and IL-2 Rγ chains. The IL-2 Rγ chain is shared by IL-2, IL-4 and IL-7. 1,2 The low affinity α chain is a 55 kD polypeptide. It is incapable of transmitting intracellular signals due to its short cytoplasmic tail. However, it can bind IL-2 rapidly to the cell membrane. The β chain (75 kD) and the γ chain (64 kD) form a complex that can bind IL-2 with high affinity and slow dissociation and can mediate signal transduction.

Cells known to express the gamma-chain include monocytes,^{3,4} neutrophils,⁵ thymocytes,⁶ CD4⁺ and CD8⁺ T cells, NK cells and B cells.⁷

Reagents

The product is supplied lyophilized from a $0.2 \mu m$ filtered solution in phosphate buffered saline. Endotoxin level is < 10 ng per mg antibody as determined by the LAL method.

Preparation Instructions

To one vial of lyophilized powder, add 1 ml of $0.2 \, \mu m$ -filtered PBS to produce a $0.5 \, mg/ml$ stock solution of antibody. If aseptic technique is used, no further filtration should be needed for use in cell culture environments.

Storage/Stability

Prior to reconstitution, store at -20°C. Reconstituted product may be stored at 2-8°C for at least one month. For prolonged storage, freeze in working aliquots at -20°C. Avoid repeated freezing and thawing.

Procedure

Anti-Human IL-2 sR γ is tested for its ability to neutralize human cell surface IL-2 R γ mediated IL-2 bioactivity in a ³H-thymidine incorporation assay using MO7e cells. ⁸ The ND₅₀ of the antibody is defined as the concentration of antibody resulting in a one-half maximal inhibition of the cell surface IL-2 R γ mediated recombinant human IL-2 response on a responsive cell line.

Product Profile

For neutralization, a working concentration of 2 - 6 μ g/ml of Monoclonal Anti- IL-2 sR γ will block 50% of the bioactivity due to 10 ng/ml recombinant human IL-2 in a 3 H-thymidine incorporation assay using 10^5 /ml MO7e cells.

For Indirect Immunoblotting, a working concentration of $1-2 \mu g/ml$ is determined using recombinant human IL-2 R γ at 100 ng/lane under non-reducing conditions.

For Indirect ELISA, a working concentration of 0.5 - 1 μ g/ml is determined to detect recombinant IL-2 R γ to a limit of 3 ng/well.

Note: In order to obtain best results in different techniques and preparations we recommend determining optimal working dilutions by titration test. **References**

- 1. Noguchi, M., et al., Science, **262**, 1877 (1993)
- 2. Russel, S.M., et al., Science, 262, 1880 (1993).
- 3. Epling-Burnette, P.K., et al., Eur. J. Immunol., **25**, 291 (1995).
- 4. Bosco, M.C., et al., Blood, 83, 2995 (1994).
- 5. Liu, J.H., et al., Blood, 84, 3870 (1994).
- 6. DiSanto, J.P., et al., Eur. J. Immunol., **24**, 3014 (1994).
- 7. Sugamura, K., et al., Adv. Immunol., **59**, 225 (1995).
- 8. Avanzi, G., et al., Br. J. Haematol., 69, 359 (1988).

lpg 4/99