sigma-aldrich.com

3050 Spruce Street, St. Louis, MO 63103 USA Tel: (800) 521-8956 (314) 771-5765 Fax: (800) 325-5052 (314) 771-5757 email: techservice@sial.com sigma-aldrich.com

Product Information

BMP-7, active, human recombinant, expressed in *Nicotiana benthamiana*

Catalog Number **B0814** Storage Temperature –20 °C

Synonyms: Bone morphogenetic protein 7, OP1, osteogenic protein

Product Description

The bone morphogenetic proteins (BMPs) are a family of secreted signaling molecules that can induce ectopic bone growth. BMPs were originally identified by the ability of demineralized bone extract to induce endochondral osteogenesis *in vivo* in an extraskeletal site.

Bone morphogenetic protein 7 (BMP-7), also known as osteogenic protein 1 (OP1), is a widely expressed TGF- β superfamily member with important functions during embryogenesis, in the adult, and in disease.^{1,2} BMP-7 plays a role in a variety of organ systems. It promotes new bone formation and nephron development,^{3,4} inhibits the branching of prostate epithelium,⁵ and antagonizes epithelial mesenchymal transition.^{6,7} In pathological conditions, BMP-7 inhibits tumor growth and metastasis,⁸ ameliorates fibrotic damage in nephritis,⁶ and promotes neuroregeneration following brain ischemia.⁹

Recombinant human BMP-7 is produced by transient expression of BMP-7 in non-transgenic plants. It contains a 6-His-tag at the N-terminal end.

BMP-7, active is purified by sequential chromotography (FPLC). It is an animal component-free product, containing no animal-derived components or impurities. The recombinant protein is lyophilized from a solution of 0.05 M Tris-HCI, pH 7.4

Molecular mass: ~16.5 kDa

Sequence: single chain, containing 144 amino residues HHHHHSTGSKQRSQNRSKTPKNQEALRMANVAEN SSSDQRQACKKHELYVSFRDLGWQDWIIAPEGYAAY YCEGECAFPLNSYMNATNHAIVQTLVHFINPETVPKP CCAPTQLNAISVLYFDDSSVILKKYRNMVVRACGCH

Purity: >97% (SDS-PAGE)

ED₅₀: ≤40 ng/mL

Biological activity: The biological activity of BMP-7 is measured by its ability to induce alkaline phosphatase production by ATDC5 cells.

Endotoxin: <0.04 EU/1 µg of the protein (LAL method)

Precautions and Disclaimer

This product is for R&D use only, not for drug, household, or other uses. Please consult the Material Safety Data Sheet for information regarding hazards and safe handling practices.

Preparation Instructions

The lyophilized protein should be reconstituted in water to a concentration of 50 ng/ μ L. It is recommended to use a carrier protein (0.1% HSA or BSA).

Storage/Stability

The product is shipped ambient. Upon receiving, store it immediately at -20 °C.

Upon reconstitution, this enzyme can be aliquoted and stored under sterile conditions at -20 °C. Avoid repeated freeze/thaw cycles.

References

- 1. Chen, D. et al., Bone morphogenetic proteins. Growth Factors, **22**, 233–241 (2004).
- Kishigami, S., and Mishina, Y., BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev., 16, 265–278 (2005).
- Sampath, T.K. et al., Recombinant human osteogenic protein-1 (hOP-1) induces new bone formation *in vivo* with a specific activity comparable with natural bovine osteogenic protein and stimulates osteoblast proliferation and differentiation *in vitro*. J. Biol. Chem., **267**, 20352 (1992).
- Kazama, I. et al., Podocyte-specific deletion of BMP7 leads to growth defect of nephrons with inactivation of P38MAPK. J. Am. Soc. Nephrol., **19**, 2181–2191 (2008).

- Grishina, I.B. et al., BMP7 inhibits branching morphogenesis in the prostate gland and interferes with Notch signaling. Dev. Biol., 288, 334–347 (2005).
- Zeisberg, M. et al., BMP-7 counteracts TGF-beta1induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med., 9, 964-968 (2003).
- Yu, M.A. et al., HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J. Am. Soc. Nephrol., 20, 567–581 (2009).
- Buijs, J.T. et al., BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis *in vivo*. Am. J. Pathol., **171**, 1047–1057 (2007).
- Chou, J. et al., Neuroregenerative effects of BMP7 after stroke in rats. J. Neurol. Sci., 240, 21–29 (2006).

SC,MAM 05/12-1