PRINCIPLE:

L-Asparagine + H₂O Asparaginase > L-Aspartate + NH₃

CONDITIONS: $T = 37^{\circ}C$, pH = 8.6, A_{436nm} , Light path = 1 cm

METHOD: Spectrophotometric Stop Rate Determination

REAGENTS:

A. 50 mM Tris Buffer, pH 8.6 at 37°C (Prepare 100 ml in deionized water using Trizma Base, Prod. No. T-1503. Adjust to pH 8.6 at 37°C with 1 M HCl.)

- B. 189 mM L-Asparagine Solution
 (Prepare 10 ml in deionized water using L-Asparagine, Anhydrous, Prod. No. A-0884.)
- C. 6 mM Ammonium Sulfate Standard Solution ((NH₄)₂SO₄ Std) (Prepare 100 ml deionized water using Ammonium Sulfate, Grade I, Prod. No. A-5132.)
- D. 1.5 M Trichloroacetic Acid (TCA) (Prepare 10 ml in deionized water using Trichloroacetic Acid, 6.1 N Solution, Stock No. 490-10.)
- E. Ammonia Color Reagent (Use Nessler's Reagent, Aldrich Stock No. 34,518-8.)
- F. Asparaginase Enzyme Solution (Immediately before use, prepare a solution containing 2.0 4.0 units/ml of Asparaginase in cold deionized water.)

Revised: 09/12/97

SSASPA03

PROCEDURES:

Step 1:

Pipette (in milliliters) the following reagents into suitable tubes:

						Std
	<u>Test</u>	<u>Blank</u>	<u>Std 1</u>	Std 2		Std 3 Blank
Reagent A (Buffer) Reagent B	1.00	1.00	1.00	1.00	1.00	1.00
(L-Asparagine Soln) Reagent C	0.10	0.10				
$((NH_4)_2SO_4 Std)$			0.25	0.50	1.00	
Deionized Water	0.90	0.90	0.85	0.60	0.10	1.10
Equilibrate to 37°C. Then add:						
Reagent F						
(Enzyme Solution)	0.10					
Immediately mix by inversion and incubate at 37°C for 30 minutes. Then add:						
Reagent D (TCA) Reagent F	0.10	0.10	0.10	0.10	0.10	0.10
(Enzyme Solution)		0.10				
Mix by inversion. Centrifuge for 2 minutes to clarify.						
Step 2:						
Pipette (in milliliters) the following reagents into suitable containers:						
Deionized Water Supernatant	4.30	4.30	4.30	4.30	4.30	4.30
(from Step 1)	0.20	0.20	0.20	0.20	0.20	0.20
Reagent E						

Immediately mix by inversion and after 1 minute record the A_{436nm} for Standards, Tests, and Blanks.

0.50

0.50

0.50

0.50

0.50

SSASPA03 Page 2 of 4

0.50

Revised: 09/12/97

(Ammonia Color Reagent)

CALCULATIONS:

Standard Curve:

r A_{436nm} Standard = A_{436nm} Standard - A_{436nm} Standard Blank

Prepare a standard curve by plotting the r A $_{436nm}$ of the Standard versus Ammonia (NH $_3$) concentration. Note that 1 mole of Ammonium Sulfate corresponds to 2 moles of Ammonia, therefore a 6 mM Ammonium Sulfate standard is equivalent to a 12 mM ammonium standard.

Sample Determination:

 $r A_{436nm}$ Test = A_{436nm} Test - A_{436nm} Test Blank

Determine the µmoles of NH₃ liberated using the standard curve.

Units/ml enzyme =
$$\frac{\text{(}\mu\text{mole of NH}_3\text{ liberated)}(2.20)}{(0.2)(30)(0.1)}$$

2.20 = Volume of Step 1

0.2 = Volume of Step 1 used in Step 2

30 = Time of assay in minutes

0.1 = Volume (in milliliters) of enzyme used

UNIT DEFINITION:

One unit will liberate 1.0 µmole of ammonia from L-asparagine per minute at pH 8.6 at 37°C.

FINAL ASSAY CONCENTRATION:

In a 2.20 ml reaction mix, the final concentrations are, 23 mM Tris, 8.6 mM L-asparagine and 0.2 - 0.4 units of asparaginase.

SSASPA03 Revised: 09/12/97

REFERENCES:

Shirfrin, S., Parrott, C.L. and Luborsky, S.W. (1974) Journal of Biological Chemistry 249, 1335-1340

NOTES:

- 1. This assay is based on the cited reference.
- 2. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

This procedure is for informational purposes. For a current copy of Sigma's quality control procedure contact our Technical Service Department.

 ${\tt SSASPA03} \qquad \qquad {\tt Page \ 4 \ of \ 4}$

Revised: 09/12/97