Enzymatic Assay of DIAPHORASE¹ (EC 1.8.1.4)

PRINCIPLE:

DPIP + β -NADH $\frac{\text{Diaphorase}}{\beta}$ > β -NAD + reduced DPIP

Abbreviations used: DPIP = 2,6-Dichlorophenol-Indophenol β -NADH = β -Nicotinamide Adenine Dinucleotide, Reduced Form β -NAD = β -Nicotinamide Adenine Dinucleotide, Oxidized Form

CONDITIONS: $T = 25^{\circ}C$, pH = 7.5, A_{600nm} , Light path = 1 cm

METHOD: Continuous Spectrophotometric Rate Determination

REAGENTS:

- A. 20 mM Tris HCI Buffer, pH 7.5 at 25°C
 (Prepare 100 ml in deionized water using Trizma Base, Sigma Prod. No. T-1503. Adjust to pH 7.5 at 25°C with 1 M HCI.)
- B. 0.23 mM β-Nicotinamide Adenine Dinucleotide, Reduced Form Solution (β-NADH) (Dissolve the contents of a 1 mg vial of β-Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Sigma Stock No. 340-110, in 60 ml of Reagent A or prepare 6 ml in Reagent A using β-Nicotinamide Adenine Dinucleotide, Reduced Form, Disodium Salt, Sigma Prod. No. N-8129. PREPARE FRESH.)
- C. 1.17 mM 2,6-Dichlorophenol-Indophenol Solution (DPIP) (Prepare 100 ml in deionized water using 2,6-Dichlorophenol-Indophenol, Sodium Salt, Sigma Prod. No. D-1878.)
- D. 200 mM Tris HCl Buffer with 294 mM Potassium Chloride, 0.54 mM Flavin Mononucleotide and 0.025% (w/v) Bovine Serum Albumin, pH 7.5 at 25°C (Enzyme Diluent) (Prepare 100 ml in deionized water using Trizma Base, Sigma Prod. No. T-1503, Potassium Chloride, Sigma Prod. No. P-4504, Flavin Mononucleotide, Sodium Salt, Sigma Prod. No. F-6750, and Albumin, Bovine, Sigma Prod. No. A-4503. Adjust to pH 7.5 at 25°C with 1 M HCl.)

Enzymatic Assay of DIAPHORASE¹ (EC 1.8.1.4)

REAGENTS: (continued)

 E. Diaphorase Enzyme Solution (Immediately before use, prepare a solution containing 0.05 - 0.1 unit/ml of Diaphorase in cold Reagent D.)

PROCEDURE:

Pipette (in milliliters) the following reagents into suitable cuvettes:

	Test	<u>Blank</u>
Reagent B (β-NADH)	2.80	2.80
Reagent C (DPIP)	0.10	0.10

Mix by inversion and equilibrate to 25° C. Monitor the A_{600nm} until constant, using a suitably thermostatted spectrophotometer. Then add:

Reagent D (Enzyme Diluent)		0.10
Reagent E (Enzyme Solution)	0.10	

Immediately mix by inversion and record the decrease in the A_{600nm} for 5-10 minutes. Obtain the ΔA_{600nm} /minute using the maximum linear rate for both the Test and Blank.

CALCULATIONS:

Units/ml enzyme = -

(∆A_{600nm}/min Test - ∆A_{600nm}/min Blank)(3)(df)

(21) (0.1)

3 = Total volume (in milliliters) of assay

df = Dilution factor

21 = Millimolar extinction coefficient of DPIP at 600 nm

0.1 = Volume (in milliliters) of enzyme used

units/ml enzyme

mg solid/ml enzyme

units/ml enzyme

Units/mg protein =

Units/mg solid =

mg protein/ml enzyme

Enzymatic Assay of DIAPHORASE¹ (EC 1.8.1.4)

UNIT DEFINITION:

One unit of either "diaphorase" or "lipoyl" dehydrogenase will oxidize 1.0 μ mole of β -NADH per minute at pH 7.5 at 25°C, with the corresponding reduction of the appropriate electron acceptor.

FINAL ASSAY CONCENTRATION:

In a 3.00 ml reaction mix, the final concentrations are 25 mM Tris, 0.22 mM β -nicotinamide adenine dinucleotide, reduced form, 0.039 mM 2,6-dichlorophenol-indophenol, 9.8 mM potassium chloride, 0.018 mM flavin mononucleotide, 0.00083% (w/v) bovine serum albumin, and 0.005 - 0.01 unit diaphorase.

REFERENCES:

Savage, N. (1957) Biochem. J. 67, 146-155.

NOTES:

- 1. This assay is not to be used for Diaphorase, from Porcine Heart, Sigma Prod. No. D-3752.
- 2. This assay is based on the cited reference.
- 3. Where Sigma Product or Stock numbers are specified, equivalent reagents may be substituted.

This procedure is for informational purposes. For a current copy of Sigma's quality control procedure contact our Technical Service Department.