Skip to Content
Merck

Porous silicon advances in drug delivery and immunotherapy.

Current opinion in pharmacology (2013-07-13)
David J Savage, Xuewu Liu, Steven A Curley, Mauro Ferrari, Rita E Serda
ABSTRACT

Biomedical applications of porous silicon include drug delivery, imaging, diagnostics and immunotherapy. This review summarizes new silicon particle fabrication techniques, dynamics of cellular transport, advances in the multistage vector approach to drug delivery, and the use of porous silicon as immune adjuvants. Recent findings support superior therapeutic efficacy of the multistage vector approach over single particle drug delivery systems in mouse models of ovarian and breast cancer. With respect to vaccine development, multivalent presentation of pathogen-associated molecular patterns on the particle surface creates powerful platforms for immunotherapy, with the porous matrix able to carry both antigens and immune modulators.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Silicon, powder, −325 mesh, 99% trace metals basis
Sigma-Aldrich
Silicon, pieces, 99.95% trace metals basis
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, P-type, contains boron as dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 3 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer, <111>, P-type, contains boron as dopant, diam. × thickness 2 in. × 0.3 mm
Sigma-Aldrich
Silicon, nanopowder, <100 nm particle size (TEM), ≥98% trace metals basis
Sigma-Aldrich
Silicon, wafer (single side polished), <111>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains no dopant, diam. × thickness 2 in. × 0.5 mm
Sigma-Aldrich
Silicon, wafer (single side polished), <100>, N-type, contains phosphorus as dopant, diam. × thickness 2 in. × 0.5 mm
Silicon, sheet, 10x10mm, thickness 0.5mm, single crystal, -100, 100%
Silicon, rod, 40mm, diameter 20mm, single crystal, -100, 99.999%
Silicon, sheet, 10x10mm, thickness 0.6mm, single crystal, -100, 100%
Silicon, disks, 15.9mm, thickness 0.38mm, single crystal, n-type, 100%
Silicon, rod, 100mm, diameter 12.7mm, single crystal - random orientation, 100%
Silicon, disks, 13mm, thickness 0.38mm, single crystal, 100%
Silicon, rod, 100mm, diameter 2.0mm, crystalline, 100%
Silicon, disks, 15.9mm, thickness 0.38mm, single crystal, n-type, 100%
Silicon, rod, 100mm, diameter 25mm, crystalline, 100%
Silicon, rod, 50mm, diameter 2.0mm, crystalline, 100%
Silicon, sheet, 14x14mm, thickness 1.0mm, single crystal, -111, 100%
Silicon, rod, 50mm, diameter 5.0mm, crystalline, 100%
Silicon, sheet, 25x25mm, thickness 1.0mm, single crystal, -100, 100%
Silicon, rod, 50mm, diameter 5mm, single crystal, -100, 99.999%
Silicon, sheet, 40x40mm, thickness 3.0mm, single crystal, p-type, 100%
Silicon, rod, 100mm, diameter 5.0mm, crystalline, 100%