Skip to Content
Merck
  • Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis.

Antisense suppression of l-galactose dehydrogenase in Arabidopsis thaliana provides evidence for its role in ascorbate synthesis and reveals light modulated l-galactose synthesis.

The Plant journal : for cell and molecular biology (2002-06-06)
Stephan Gatzek, Glen L Wheeler, Nicholas Smirnoff
ABSTRACT

l-Galactose dehydrogenase (l-GalDH), a novel enzyme that oxidizes l-Gal to l-galactono-1,4-lactone (l-GalL), has been purified from pea seedlings and cloned from Arabidopsis thaliana. l-GalL is a proposed substrate for ascorbate biosynthesis in plants, therefore the function of l-GalDH in ascorbate biosynthesis was investigated by overexpression in tobacco and antisense suppression in A. thaliana. In tobacco the highest expressing lines had a 3.5-fold increase in extractable activity, but this did not increase leaf ascorbate concentration. Arabidopsis thaliana, transformed with an antisense l-GalDH construct, produced lines with 30% of wild-type activity. These had lower leaf ascorbate concentration when grown under high light conditions. l-Gal pool size increased in antisense transformants with low l-GalDH activity, and l-Gal concentration was negatively correlated with ascorbate. The results provide direct evidence for a role of l-GalDH in ascorbate biosynthesis. Ascorbate pool size in A. thaliana is increased by acclimation to high light, but l-GalDH expression was not affected. l-Gal accumulation was higher in antisense plants acclimated to high light, indicating that the capacity to synthesize l-Gal from GDP-mannose is increased. Because the only known function of l-GalL is ascorbate synthesis, these antisense plants provide an opportunity to investigate ascorbate function with minimal effects on carbohydrate metabolism. Measurements of other antioxidants revealed an increase in ascorbate- and pyrogallol-dependent peroxidase activity in low-ascorbate lines. As ascorbate is the major hydrogen peroxide-scavenging antioxidant in plants, this could indicate a compensatory mechanism for controlling hydrogen peroxide concentration.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
β-Galactose Dehydrogenase from Pseudomonas fluorescens, recombinant, expressed in E. coli, ammonium sulfate suspension, ≥50 units/mg protein (biuret)