Skip to Content
Merck
  • Epigenetically distinct synaptic architecture in clonal compartments in the teleostean dorsal pallium.

Epigenetically distinct synaptic architecture in clonal compartments in the teleostean dorsal pallium.

eLife (2023-07-25)
Yasuko Isoe, Ryohei Nakamura, Shigenori Nonaka, Yasuhiro Kamei, Teruhiro Okuyama, Naoyuki Yamamoto, Hideaki Takeuchi, Hiroyuki Takeda
ABSTRACT

The dorsal telencephalon (i.e. the pallium) exhibits high anatomical diversity across vertebrate classes. The non-mammalian dorsal pallium accommodates various compartmentalized structures among species. The developmental, functional, and evolutional diversity of the dorsal pallium remain unillustrated. Here, we analyzed the structure and epigenetic landscapes of cell lineages in the telencephalon of medaka fish (Oryzias latipes) that possesses a clearly delineated dorsal pallium (Dd2). We found that pallial anatomical regions, including Dd2, are formed by mutually exclusive clonal units, and that each pallium compartment exhibits a distinct epigenetic landscape. In particular, Dd2 possesses a unique open chromatin pattern that preferentially targets synaptic genes. Indeed, Dd2 shows a high density of synapses. Finally, we identified several transcription factors as candidate regulators. Taken together, we suggest that cell lineages are the basic components for the functional regionalization in the pallial anatomical compartments and that their changes have been the driving force for evolutionary diversity.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-Glutamic Acid Decarboxylase 65/67 antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution
Sigma-Aldrich
Anti-Parvalbumin Antibody, ascites fluid, clone PARV-19, Chemicon®
Sigma-Aldrich
Anti-Glutamic Acid Decarboxylase 65 (5-22) antibody produced in rabbit, IgG fraction of antiserum, buffered aqueous solution