- Negative regulation of interleukin 1β expression in response to DnaK from Pseudomonas aeruginosa via the PI3K/PDK1/FoxO1 pathways.
Negative regulation of interleukin 1β expression in response to DnaK from Pseudomonas aeruginosa via the PI3K/PDK1/FoxO1 pathways.
Interleukin (IL)-1β is crucial for a wide range of inflammatory responses. Previously, we reported that IL-1β is produced in response to Pseudomonas aeruginosa-derived DnaK via NF-κB and JNK pathways; however, the signaling pathways that counter the process to maintain IL-1β homeostasis are unknown. Here, we show that DnaK-mediated expression of IL1β is increased markedly in macrophages upon blockade of PI3K/PDK1. This was verified by measuring released IL-1β protein. The negative effect of PI3K on IL-1β production was dependent on suppression of both NF-κB and JNK activation. Intriguingly, PDK1 (an underlying mediator of PI3K) acted as an upstream regulator for the activation of NF-κB, but downregulated JNK activation. Furthermore, production of IL-1β and activation of JNK were triggered by inhibition of phosphorylated FoxO1; phosphorylation of FoxO1 was controlled by PDK1 signaling in response to DnaK. Thus, IL-1β production is modulated by P. aeruginosa-derived DnaK via cross-talk between JNK and PI3K/PDK1/FoxO1 pathways.