Skip to Content
Merck
  • Amplifications of stemness genes and the capacity of breast tumors for metastasis.

Amplifications of stemness genes and the capacity of breast tumors for metastasis.

Oncotarget (2020-06-12)
Nikolai Litviakov, Marina Ibragimova, Matvey Tsyganov, Polina Kazantseva, Irina Deryusheva, Alina Pevzner, Artem Doroshenko, Eugeny Garbukov, Natalia Tarabanovskaya, Elena Slonimskaya
ABSTRACT

The phenomenon of non-CSC (cancer stem cell) to CSC plasticity has been previously described in multiple studies and occurs during the ectopic expression of stemness genes such as OCT3, SOX2, KLF4, MYC, NOTCH1, and NANOG. In our opinion, acquiring the ability to ectopically express stemness genes, selected by bioinformatics analysis and, accordingly, non-CSC to CSC plasticity, is due to amplification of genes at the following locations: 3q, 5p, 6p, 7q, 8q, 13q, 9p, 9q, 10p, 10q21.1, 16p, 18chr, 19p. This paper demonstrates the significance of stemness gene amplifications leading to metastasis and stem-like cancer cell activity. In our studies, stemness gene amplifications were determined using the CytoScan HD Array. We studied the association of changes in stemness gene amplifications in tumors with metastasis treated with neoadjuvant chemotherapy (NAC) in 50 patients with breast cancer. We used qPCR to evaluate the expression of 13 stemness genes in tumors before and after NAC in 98 patients with breast cancer. Using primary cultures from the breast tumor of patient St23784/17 with stemness gene amplifications (SOX2, MYC, KLF4, NOTCH1, NODAL) and patient Ti41749/17 without stemness gene amplifications in the tumor, we studied the expression of stemness genes, proliferative tumor stem-cell activity, mammosphere formation, and expression of the CD44 tumor stem cell marker. The occurrence of amplifications at regions of stemness gene localization during NAC (22% cases) in residual tumors was associated with a very high metastasis rate (91% cases). Eliminating tumor clones with stemness gene amplifications using NAC (42% cases) led to 100% metastasis-free survival. In patients who developed hematogenic metastases after treatment, the expression of 7/13 stemness genes in the residual tumor after NAC was statistically higher than in patients without metastases. Primary cultures of EpCam+ tumor cells from patients with stemness gene amplifications revealed high proliferative activity. After the 3rd passage, the number of tumor cells increased 30-fold. Due to IL-6, this cell population showed a 2.5-fold increase in the EpCam+CD44hiCD24-/low and 2-fold decrease in the EpCam+CD44lowCD24- subpopulations of tumor stem cells; the formation of mammospheres was also observed. Primary cultures of EpCam+ tumor cells from the patient with no stemness gene amplifications had relatively low proliferative activity. IL-6 caused a 2.3-fold increase in the EpCam+CD44lowCD24- and 2-fold decrease in the EpCam+CD44hiCD24-/low subpopulations of tumor stem cells with no induction of mammospheres. The results of this study show that stemness gene amplifications in tumor cells are associated with metastasis and determine their potential stem property activation and non-CSC to CSC plasticity with the formation of EpCam+CD44hiCD24-/low cells, active proliferation, mammosphere formation, and metastasis.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Interleukin-6 human, Animal-component free, recombinant, expressed in E. coli, suitable for cell culture