Skip to Content
Merck
  • Comparative Antiviral Efficacy of Viral Protease Inhibitors against the Novel SARS-CoV-2 In Vitro.

Comparative Antiviral Efficacy of Viral Protease Inhibitors against the Novel SARS-CoV-2 In Vitro.

Virologica Sinica (2020-09-11)
Leike Zhang, Jia Liu, Ruiyuan Cao, Mingyue Xu, Yan Wu, Weijuan Shang, Xi Wang, Huanyu Zhang, Xiaming Jiang, Yuan Sun, Hengrui Hu, Yufeng Li, Gang Zou, Min Zhang, Lei Zhao, Wei Li, Xiaojia Guo, Xiaomei Zhuang, Xing-Lou Yang, Zheng-Li Shi, Fei Deng, Zhihong Hu, Gengfu Xiao, Manli Wang, Wu Zhong
ABSTRACT

The recent outbreak of novel coronavirus pneumonia (COVID-19) caused by a new coronavirus has posed a great threat to public health. Identifying safe and effective antivirals is of urgent demand to cure the huge number of patients. Virus-encoded proteases are considered potential drug targets. The human immunodeficiency virus protease inhibitors (lopinavir/ritonavir) has been recommended in the global Solidarity Trial in March launched by World Health Organization. However, there is currently no experimental evidence to support or against its clinical use. We evaluated the antiviral efficacy of lopinavir/ritonavir along with other two viral protease inhibitors in vitro, and discussed the possible inhibitory mechanism in silico. The in vitro to in vivo extrapolation was carried out to assess whether lopinavir/ritonavir could be effective in clinical. Among the four tested compounds, lopinavir showed the best inhibitory effect against the novel coronavirus infection. However, further in vitro to in vivo extrapolation of pharmacokinetics suggested that lopinavir/ritonavir could not reach effective concentration under standard dosing regimen [marketed as Kaletra®, contained lopinavir/ritonavir (200 mg/50 mg) tablets, recommended dosage is 400 mg/10 mg (2 tablets) twice daily]. This research concluded that lopinavir/ritonavir should be stopped for clinical use due to the huge gap between in vitro IC50 and free plasma concentration. Nevertheless, the structure-activity relationship analysis of the four inhibitors provided further information for de novel design of future viral protease inhibitors of SARS-CoV-2.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Chloroquine diphosphate salt, powder or crystals, 98.5-101.0% (EP)