Skip to Content
Merck
  • Assessment of the optimal vitrification protocol for pre-pubertal mice testes leading to successful in vitro production of flagellated spermatozoa.

Assessment of the optimal vitrification protocol for pre-pubertal mice testes leading to successful in vitro production of flagellated spermatozoa.

Andrology (2015-05-28)
L Dumont, B Arkoun, F Jumeau, J-P Milazzo, A Bironneau, D Liot, J Wils, C Rondanino, N Rives
ABSTRACT

Testicular tissue cryopreservation offers the hope of preserved future fertility to pre-pubertal boys with cancer before exposition to gonadotoxic treatments. The objective of this study was to compare controlled slow freezing (CSF) with five vitrification techniques for cryopreservation of murine pre-pubertal testicular tissue and to evaluate the best protocol that could provide a successful completion of spermatogenesis after in vitro maturation. Testicular tissue from 24 mice at 6.5 days post-partum (dpp) was used to compare several vitrification protocols with one another, as well as with a CSF protocol. Toxicity test using additional 12 mice was performed for all cryopreservation solutions. Fresh tissue (FT) from six mice was used as a control. Once the optimal vitrification protocol was selected [the modified solid surface vitrification No. 1 (mSSV1 )], testes from 18 mice were cultured in vitro for 30 days with (i) fresh, (ii) slow-frozen/thawed and (iii) vitrified/warmed tissues. Testes from six mice at 36.5 dpp were used as controls. At day 30 of in vitro culture, germ cells of the seminiferous tubules showed a high ability to proliferate and elongated spermatids were observed after both freezing techniques, confirming the successful completion of in vitro spermatogenesis. However, after mSSV1 , the morphological alterations and the percentage of pyknotic seminiferous tubules were lower than CSF (4.67 ± 0.53 vs. 10.1 ± 1.12 and 22.7 ± 2.83% vs. 37.3 ± 4.24% respectively). Moreover, the number of flagellated spermatozoa produced per mg of tissue was higher for mSSV1 than for CSF (35 ± 3 vs. 9 ± 4 cells), with amounts of secreted testosterone during the culture close to those of FT. The mSSV1 protocol resulted in success rates better than CSF in maintaining testicular tissue structure, tubular morphology and tissue functions not solely for immediate frozen/thawed tissues but also after a long-term in vitro culture.

MATERIALS
Product Number
Brand
Product Description

Supelco
Testosterone solution, 1.0 mg/mL in acetonitrile, ampule of 1 mL, certified reference material, Cerilliant®
Sigma-Aldrich
Agarose, Type I, low EEO
Sigma-Aldrich
Ethanol, anhydrous, denatured
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, ≥97.5% (HPLC)
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium - high glucose, With 4500 mg/L glucose, L-glutamine, sodium pyruvate, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
L-15 Medium (Leibovitz), Without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Bouin′s solution, histological fixative
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
Sucrose, puriss., meets analytical specification of Ph. Eur., BP, NF
Sigma-Aldrich
8-Octanoyloxypyrene-1,3,6-trisulfonic acid trisodium salt, suitable for fluorescence, ≥90% (HPCE)
Sigma-Aldrich
Sucrose, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
Dimethyl sulfoxide, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Monoclonal Anti-Tubulin, Acetylated antibody produced in mouse, clone 6-11B-1, ascites fluid
Sigma-Aldrich
Dimethyl sulfoxide, anhydrous, ≥99.9%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Anti-Mouse IgG (Fc specific)–FITC antibody produced in goat, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, meets USP testing specifications
Sigma-Aldrich
Sucrose, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Sucrose, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC)
Sigma-Aldrich
Sucrose, ACS reagent
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Dimethyl sulfoxide, PCR Reagent
Sigma-Aldrich
Dulbecco′s Modified Eagle′s Medium/Nutrient Mixture F-12 Ham, With L-glutamine, 15 mM HEPES, and sodium bicarbonate, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Medium 199, HEPES Modification, with Earle′s salts, 25 mM HEPES and sodium bicarbonate, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Sucrose, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Gentamicin solution, 50 mg/mL in deionized water, liquid, 0.1 μm filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, ≥90% (HPLC)
Sigma-Aldrich
Dimethyl sulfoxide, ≥99.5% (GC), suitable for plant cell culture