Skip to Content
Merck
  • Functional characterization of spikelet activity in the primary visual cortex.

Functional characterization of spikelet activity in the primary visual cortex.

The Journal of physiology (2015-09-04)
Benjamin Scholl, Sari Andoni, Nicholas J Priebe
ABSTRACT

In vivo whole-cell patch-clamp recordings in cat visual cortex revealed small deflections in the membrane potential of neurons, termed spikelets. Spikelet statistics and functional properties suggest these deflections originate from a single, nearby cell. Spikelets shared a number sensory selectivities with the principal neuron including orientation selectivity, receptive field location and eye preference. Principal neurons and spikelets did not, however, generally share preferences for depth (binocular disparity). Cross-correlation of spikelet activity and membrane potential revealed direct effects on the membrane potential of some principal neurons, suggesting that these cells were synaptically coupled or received common input from the cortical network. Other spikelet-neuron pairs revealed indirect effects, likely to be the result of correlated network events. Intracellular recordings in the neocortex reveal not only the membrane potential of neurons, but small unipolar or bipolar deflections that are termed spikelets. Spikelets have been proposed to originate from various sources, including active dendritic mechanisms, gap junctions and extracellular signals. Here we examined the functional characteristics of spikelets measured in neurons from cat primary visual cortex in vivo. Spiking statistics and our functional characterization of spikelet activity indicate that spikelets originate from a separate, nearby cell. Spikelet kinetics and lack of a direct effect on spikelet activity from hyperpolarizing current injection suggest they do not arise from electrical coupling to the principal neuron being recorded. Spikelets exhibited matched orientation tuning preference and ocular dominance to the principal neuron. In contrast, binocular disparity preferences of spikelets and the principal neuron were unrelated. Finally, we examined the impact of spikelets on the principal neuron's membrane potential; we did observe some records for which spikelets were correlated with the membrane potential of the principal neuron, suggesting that these neurons were synaptically coupled or received common input from the cortical network.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.85%
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Sigma-Aldrich
Potassium gluconate, 97.0-103.0% dry basis, meets USP testing specifications
Sigma-Aldrich
Potassium D-gluconate, ≥99% (HPLC)
Sigma-Aldrich
Potassium hydroxide, reagent grade, 90%, flakes
Supelco
Potassium hydroxide solution, volumetric, 8.0 M KOH (8.0N)
Sigma-Aldrich
Potassium hydroxide, pellets, reag. Ph. Eur., ≥85%
Sigma-Aldrich
Potassium hydroxide, ACS reagent, ≥85%, pellets
Sigma-Aldrich
Potassium hydroxide, semiconductor grade, pellets, 99.99% trace metals basis (Purity excludes sodium content.)
Sigma-Aldrich
Potassium hydroxide solution, 45 wt. % in H2O
Sigma-Aldrich
Potassium hydroxide, puriss. p.a., ≥86% (T), pellets
Sigma-Aldrich
Potassium hydroxide, technical, ≥85%, powder
Sigma-Aldrich
Potassium hydroxide, puriss., meets analytical specification of Ph. Eur., BP, 85-100.5%, pellets
Sigma-Aldrich
Potassium hydroxide, ≥85% KOH basis, pellets, white
Sigma-Aldrich
Potassium hydroxide, BioXtra, ≥85% KOH basis