Skip to Content
Merck
  • Development of experiment and theory to detect and predict ligand phase separation on silver nanoparticles.

Development of experiment and theory to detect and predict ligand phase separation on silver nanoparticles.

Angewandte Chemie (International ed. in English) (2015-04-18)
Zachary Farrell, Steve Merz, Jon Seager, Caroline Dunn, Sergei Egorov, David L Green
ABSTRACT

MALDI mass-spectrometry measurements are combined with self-consistent mean-field (SCF) calculations to detect and predict ligand phase separation on Ag nanoparticles. The experimental and theoretical techniques complement each other by enabling quantification of the nearest-neighbor distribution of a ligand mixture in a monolayer shell. By tracking a characteristic metallic fragment family, analysis of a MALDI spectrum produces a frequency distribution corresponding to specific ligand patterning. Inherent to the SCF calculation is the enumeration of local interactions that dictate ligand assembly. Interweaving MALDI and SCF facilitates a comparison between the experimentally and theoretically derived frequency distributions as well as their deviation from a well-mixed state. Thus, we combine these techniques to detect and predict phase separation in monolayers that mix uniformly or experience varying degrees of de-mixing, including microphase separation and stripe formation. Definition of MALDI removed as this is a commonly recognized technique.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium borohydride solution, ~12 wt. % in 14 M NaOH
Sigma-Aldrich
Ethanol, anhydrous, denatured
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile, ≥98%
Sigma-Aldrich
VenPure® SF, powder
Sigma-Aldrich
Deuterium, 99.9 atom % D
Sigma-Aldrich
1-Butanethiol, 99%
Sigma-Aldrich
Sodium borohydride, powder, ≥98.0%
Sigma-Aldrich
Deuterium, 99.8 atom % D
Sigma-Aldrich
Sodium borohydride, ReagentPlus®, 99%
Sigma-Aldrich
Sodium borohydride, caplets (18 × 10 × 8 mm), 98%
Sigma-Aldrich
Deuterium hydride, extent of labeling: 96 mol% DH, 98 atom % D
Sigma-Aldrich
Sodium borohydride, purum p.a., ≥96% (gas-volumetric)
Sigma-Aldrich
Toluene, anhydrous, 99.8%
Sigma-Aldrich
1-Dodecanethiol, ≥98%
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Sodium borohydride, granular, 10-40 mesh, 98%
Sigma-Aldrich
1-Butanethiol, ≥98%
Sigma-Aldrich
Deuterium, 99.96 atom % D
Sigma-Aldrich
Sodium borohydride, granular, 99.99% trace metals basis