Skip to Content
Merck
  • The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron.

The Vibrio cholerae Cpx envelope stress response senses and mediates adaptation to low iron.

Journal of bacteriology (2014-11-05)
Nicole Acosta, Stefan Pukatzki, Tracy L Raivio
ABSTRACT

The Cpx pathway, a two-component system that employs the sensor histidine kinase CpxA and the response regulator CpxR, regulates crucial envelope stress responses across bacterial species and affects antibiotic resistance. To characterize the CpxR regulon in Vibrio cholerae, the transcriptional profile of the pandemic V. cholerae El Tor C6706 strain was examined upon overexpression of cpxR. Our data show that the Cpx regulon of V. cholerae is enriched in genes encoding membrane-localized and transport proteins, including a large number of genes known or predicted to be iron regulated. Activation of the Cpx pathway further led to the expression of TolC, the major outer membrane pore, and of components of two RND efflux systems in V. cholerae. We show that iron chelation, toxic compounds, or deletion of specific RND efflux components leads to Cpx pathway activation. Furthermore, mutations that eliminate the Cpx response or members of its regulon result in growth phenotypes in the presence of these inducers that, together with Cpx pathway activation, are partially suppressed by iron. Cumulatively, our results suggest that a major function of the Cpx response in V. cholerae is to mediate adaptation to envelope perturbations caused by toxic compounds and the depletion of iron.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-(+)-Arabinose, 99%
Millipore
D-(−)-Arabinose, suitable for microbiology, ≥99.0%
Sigma-Aldrich
L-(+)-Arabinose, BioUltra, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
L-(+)-Arabinose, 98%
Sigma-Aldrich
D-(−)-Arabinose, ≥98% (GC)
Sigma-Aldrich
L-(+)-Arabinose, ≥99% (GC)
Sigma-Aldrich
Ampicillin, meets USP testing specifications
Supelco
Ampicillin, analytical standard
Sigma-Aldrich
Ampicillin, anhydrous, 96.0-102.0% (anhydrous basis)
USP
Ampicillin, United States Pharmacopeia (USP) Reference Standard