Skip to Content
Merck
  • Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease.

Blood-brain barrier traversal by African trypanosomes requires calcium signaling induced by parasite cysteine protease.

The Journal of clinical investigation (2006-09-26)
Olga V Nikolskaia, Ana Paula C de A Lima, Yuri V Kim, John D Lonsdale-Eccles, Toshihide Fukuma, Julio Scharfstein, Dennis J Grab
ABSTRACT

In this study we investigated why bloodstream forms of Trypanosoma brucei gambiense cross human brain microvascular endothelial cells (BMECs), a human blood-brain barrier (BBB) model system, at much greater efficiency than do T. b. brucei. After noting that T. b. gambiense displayed higher levels of cathepsin L-like cysteine proteases, we investigated whether these enzymes contribute to parasite crossing. First, we found that T. b. gambiense crossing of human BMECs was abrogated by N-methylpiperazine-urea-Phe-homopheylalanine-vinylsulfone-benzene (K11777), an irreversible inhibitor of cathepsin L-like cysteine proteases. Affinity labeling and immunochemical studies characterized brucipain as the K11777-sensitive cysteine protease expressed at higher levels by T. b. gambiense. K11777-treated T. b. gambiense failed to elicit calcium fluxes in BMECs, suggesting that generation of activation signals for the BBB is critically dependant on brucipain activity. Strikingly, crossing of T. b. brucei across the BBB was enhanced upon incubation with brucipain-rich supernatants derived from T. b. gambiense. The effects of the conditioned medium, which correlated with ability to evoke calcium fluxes, were canceled by K11777, but not by the cathepsin B inhibitor CA074. Collectively, these in vitro studies implicate brucipain as a critical driver of T. b. gambiense transendothelial migration of the human BBB.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Protease Inhibitor Cocktail, for use in tissue culture media, DMSO solution