- Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap junctional intercellular communication and stimulated MAPK activity.
Polycyclic aromatic hydrocarbons with bay-like regions inhibited gap junctional intercellular communication and stimulated MAPK activity.
Many polycyclic aromatic hydrocarbons (PAHs) are known carcinogens. A considerable amount of research has been devoted to predicting the genotoxic, tumor-initiating potential of PAHs based on chemical structure. However, information on the correlation of structure with the non-genetoxic, epigenetic events of tumor promotion is sparse. PAHs containing a bay or bay-like region were shown to be potent inhibitors of gap-junctional intercellular communication (GJIC), an epigenetic event involved in the removal of an initiated cell from growth suppression. We tested the epigenetic toxicity of PAHs containing bay-like regions by comparing the effects of methylated vs. chlorinated isomers of anthracene on the temporal activation of mitogen-activated protein kinase (MAPK) and the regulation of GJIC. Specifically, we used anthracene, 1-methylanthracene, 2-methylanthracene, 9-methylanthracene, 9,10-dimethylanthracene, 1-chloroanthracene, 2-chloroanthracene, and 9-chloroanthracene. We determined the effect of these compounds on GJIC and on the activation of extracellular receptor kinase (ERK 1 and 2), a MAPK, in F344 rat liver epithelial cells. Results showed that bay or bay-like regions, formed by either chlorine or a methyl group, reversibly inhibited GJIC at the same doses, time, and time of recovery, whereas the linear-planar isomers had no effect on GJIC. Similarly, the GJIC-inhibitory isomers also induced the phosphorylation of ERK 1 and ERK 2, while the non-inhibitory isomers had no effect on the activation of these MAPKs. MAPK activation occurred 10-20 min after the inhibition of GJIC, which indicates that MAPK is not involved in the initial regulation of GJIC; instead altered GJIC may be affecting MAPK activation. The present study revealed that there are structural determinants of PAHs, which clearly affect epigenetic events known to be involved in the non-genetoxic steps of tumor promotion. These events are the release of a cell from growth suppression involving the reduction of GJIC, followed by the activation of intracellular mitogenic events.