Skip to Content
Merck
  • Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo.

Midbrain and medullary control of postinspiratory activity of the crural and costal diaphragm in vivo.

Journal of neurophysiology (2011-04-01)
Hari H Subramanian, Gert Holstege
ABSTRACT

Studies on brain stem respiratory neurons suggest that eupnea consists of three phases: inspiration, postinspiration, and expiration. However, it is not well understood how postinspiration is organized in the diaphragm, i.e., whether postinspiration differs in the crural and costal segments of the diaphragm and what the influence is of postinspiratory neurons on diaphragm function during eupnea. In this in vivo study we investigated the postinspiratory activity of the two diaphragm segments during eupnea and the changes in diaphragm function following modulation of eupnea. Postinspiratory neurons in the medulla were stereotaxically localized extracellularly and neurochemically stimulated. We used three types of preparations: precollicularly decerebrated unanesthetized cats and rats and anesthetized rats. In all preparations, during eupnea, postinspiratory activity was found in the crural but not in the costal diaphragm. When eupnea was discontinued in decerebrate cats in which stimulation in the nucleus retroambiguus induced activation of laryngeal or abdominal muscles, all postinspiratory activity in the crural diaphragm was abolished. In decerebrate rats, stimulation of the midbrain periaqueductal gray abolished postinspiration in the crural diaphragm but induced activation in the costal diaphragm. In anesthetized rats, stimulation of medullary postinspiratory neurons abolished the postinspiratory activity of the crural diaphragm. Vagal nerve stimulation in these rats increased the intensity of postinspiratory neuronal discharge in the solitary nucleus, leading to decreased activity of the crural diaphragm. These data demonstrate that three-phase breathing in the crural diaphragm during eupnea exists in vivo and that postinspiratory neurons have an inhibitory effect on crural diaphragm function.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
L-Homocysteic acid, ≥95%
SKU
Pack Size
Availability
Price
Quantity