Skip to Content
Merck
  • Trimetazidine Affects Mitochondrial Calcium Uniporter Expression to Restore Ischemic Heart Function via Reactive Oxygen Species/NFκB Pathway Inhibition.

Trimetazidine Affects Mitochondrial Calcium Uniporter Expression to Restore Ischemic Heart Function via Reactive Oxygen Species/NFκB Pathway Inhibition.

Journal of cardiovascular pharmacology (2023-05-10)
Zilong Xiao, Lichun Guan, Hui Shi, Yong Yu, Ziqing Yu, Shengmei Qin, Yangang Su, Ruizhen Chen, Minghui Li, Junbo Ge
ABSTRACT

Studies have demonstrated the roles of trimetazidine beyond being an antianginal agent in ischemic heart disease (IHD) treatment associated with mechanisms of calcium regulation. Our recent studies revealed that mitochondrial calcium uniporter (MCU, the pore-forming unit responsible for mitochondrial calcium entrance) inhibition provided cardioprotective effects for failing hearts. Because trimetazidine and MCU are associated with calcium homeostasis, we hypothesized that trimetazidine may affect MCU to restore the failing heart function. In the present study, we tested this hypothesis in the context of cardiac ischemia in vivo and in vitro. The IHD model was established in male C57BL/6 mice followed by trimetazidine administration intraperitoneally at 20 mg/kg q.o.d for 8 weeks. In vitro studies were performed in a hypoxia model using primary rat neonate cardiomyocytes. The mice survival outcomes and heart function, pathohistologic, and biological changes were analyzed. The results demonstrated that trimetazidine treatment resulted in longer life spans and heart function improvement accompanied by restoration of mitochondrial calcium levels and increase in ATP production via MCU down-regulation. Studies in vitro further showed that trimetazidine treatment and MCU inhibition decreased reactive oxygen species (ROS) production, inhibited the NFκB pathway, and protected the cardiomyocytes from hypoxic injury, and vice versa. Thus, the present study unveils a unique mechanism in which trimetazidine is involved in ameliorating the ischemic failing heart via MCU down-regulation and the following mitochondrial calcium homeostasis restoration, ROS reduction, and cardiomyocyte protection through NFκB pathway inhibition. This mechanism provides a novel explanation for the treatment effects of trimetazidine on IHD.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Ru360, Ru360, is a cell-permeable oxygen-bridged dinuclear ruthenium amine complex. Binds to mitochondria with high affinity (Kd = 340 pM) and blocks Ca2+ uptake into mitochondria in vitro (IC₅₀ = 184 pM).