Skip to Content
Merck
  • DOT1L activity affects neural stem cell division mode and reduces differentiation and ASNS expression.

DOT1L activity affects neural stem cell division mode and reduces differentiation and ASNS expression.

EMBO reports (2023-06-29)
Bismark Appiah, Camila L Fullio, Chiara Ossola, Ilaria Bertani, Elena Restelli, Arquimedes Cheffer, Martina Polenghi, Christiane Haffner, Marta Garcia-Miralles, Patrice Zeis, Martin Treppner, Patrick Bovio, Laura Schlichtholz, Aina Mas-Sanchez, Lea Zografidou, Jennifer Winter, Harald Binder, Dominic Grün, Nereo Kalebic, Elena Taverna, Tanja Vogel
ABSTRACT

Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-γ-Tubulin antibody, Mouse monoclonal, clone GTU-88, ascites fluid
Sigma-Aldrich
Anti-AKAP9 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution