Skip to Content
Merck
  • Salt and Water Retention Is Associated with Microinflammation and Endothelial Injury in Chronic Kidney Disease.

Salt and Water Retention Is Associated with Microinflammation and Endothelial Injury in Chronic Kidney Disease.

Nephron (2019-09-13)
Nicos Mitsides, Fahad Mohammaed S Alsehli, Damien Mc Hough, Liliana Shalamanova, Fiona Wilkinson, Jane Alderdice, Roshni Mitra, Agnieszka Swiecicka, Paul Brenchley, Geoffrey J M Parker, M Yvonne Alexander, Sandip Mitra
ABSTRACT

Progressive chronic kidney disease (CKD) inevitably leads to salt and water retention and disturbances in the macro-and microcirculation. We hypothesize that salt and water dysregulation in advanced CKD may be linked to inflammation and microvascular injury pathways. We studied 23 CKD stage 5 patients and 11 healthy controls (HC). Tissue sodium concentration was assessed using 23Sodium magnetic resonance (MR) imaging. Hydration status was evaluated using bioimpedance spectroscopy. A panel of inflammatory and endothelial biomarkers was also measured. CKD patients had fluid overload (FO) when compared to HC (overhydration index: CKD = 0.5 ± 1.9 L vs. HC = -0.5 ± 1.0 L; p = 0.03). MR-derived tissue sodium concentrations were predominantly higher in the subcutaneous (SC) compartment (median [interquartile range] CKD = 22.4 mmol/L [19.4-31.3] vs. HC = 18.4 mmol/L [16.6-21.3]; p = 0.03), but not the muscle (CKD = 24.9 ± 5.5 mmol/L vs. HC = 22.8 ± 2.5 mmol/L; p = 0.26). Tissue sodium in both compartments correlated to FO (muscle: r = 0.63, p < 0.01; SC: rs = 0.63, p < 0.01). CKD subjects had elevated levels of vascular cell adhesion molecule (p < 0.05), tumor necrosis factor-alpha (p < 0.01), and interleukin (IL)-6 (p = 0.01) and lower levels of vascular endothelial growth factor-C (p = 0.04). FO in CKD was linked to higher IL-8 (r = 0.51, p < 0.05) and inversely associated to E-selectin (r = -0.52, p = 0.01). Higher SC sodium was linked to higher intracellular adhesion molecule (ICAM; rs = 0.54, p = 0.02). Salt and water accumulation in CKD appears to be linked with inflammation and endothelial activation pathways. Specifically IL-8, E-Selectin (in FO), and ICAM (in salt accumulation) may be implicated in the pathophysiology of FO and merit further investigation.

MATERIALS
Product Number
Brand
Product Description

Millipore
MILLIPLEX® Human Angiogenesis Panel 2, HANG2MAG-12K, Angiogenesis Bead-Based Multiplex Assays using the Luminex technology enables the simultaneous analysis of multiple angiogenic biomarkers in human serum, plasma and cell culture samples.
Millipore
MILLIPLEX® Human Angiogenesis/Growth Factor Magnetic Bead Panel - Cancer Multiplex Assay, Angiogenesie Bead-Based Multiplex Assays using the Luminex technology enables the simultaneous analysis of multiple angiogenic biomarkers in human serum, plasma and cell culture samples.