Skip to Content
Merck
  • Alternating magnetic field mediated release of fluorophores from magnetic nanoparticles by hysteretic heating.

Alternating magnetic field mediated release of fluorophores from magnetic nanoparticles by hysteretic heating.

Journal of colloid and interface science (2020-03-27)
Jonathan S Casey, Julien H Arrizabalaga, Mohammad Abu-Laban, Jeffrey C Becca, Benjamin J Rose, Kevin T Strickland, Jacob B Bursavich, Jacob S McCann, Carlos N Pacheco, Lasse Jensen, Anilchandra Attaluri, Daniel J Hayes
ABSTRACT

This study explores the use of differential heating of magnetic nanoparticles with different sizes and compositions (MFe2O4 (M = Fe, Co)) for heteroplexed temporal controlled release of conjugated fluorophores from the surface of nanoparticles. By exploiting these differences, we were able to control the amount of hysteretic heating occurring with the distinct sets of magnetic nanoparticles using the same applied alternating magnetic field radio frequency (AMF-RF). Using thermally labile retro-Diels-Alder linkers conjugated to the surface of nanoparticles, the fluorescent payload from the different nanoparticles disengaged when sufficient energy was locally generated during hysteretic heating. 1H, 13C NMR, ESI-MS, and SIMS characterized the thermally responsive fluorescent cycloadducts used in this study; the Diels Alder cycloadducts were modeled using density functional theory (DFT) computations. The localized point heating of the different nanoparticle compositions drove the retro-Diels-Alder reaction at different times resulting in higher release rates of fluorophores from the CoFe2O4 compared to the Fe3O4 nanoparticles.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
S-Acetylmercaptosuccinic anhydride, 96%
Sigma-Aldrich
4-(N-Maleimidomethyl)cyclohexane-1-carboxylic acid 3-sulfo-N-hydroxysuccinimide ester sodium salt, powder
Sigma-Aldrich
Maleimide, 99%