Skip to Content
Merck
  • Biodegradability assessment of food additives using OECD 301F respirometric test.

Biodegradability assessment of food additives using OECD 301F respirometric test.

Chemosphere (2019-11-07)
Georgia Gatidou, Niki Vazaiou, Nikolaos S Thomaidis, Athanasios S Stasinakis
ABSTRACT

The ready biodegradability of twenty food additives, belonging to the classes of artificial sweeteners, natural sweeteners, preservatives and colorings, was investigated using activated sludge as inoculum and OECD 301F respirometric test. According to the results, saccharin, aspartame, sodium cyclamate, xylitol, erythritol, maltitol, potassium sorbate, benzoic acid and sodium ascorbate are characterized as readily biodegradable compounds, partial biodegradation (<60% during the test) was noticed for steviol, inulin, alitame, curcumin, ponceau 4R and tartrazine, while no biodegradation was observed for the other five compounds. The duration of lag phase before the start of biodegradation varied between the target compounds, while their ultimate biodegradation half-life values ranged between 0.7 ± 0.1 days (benzoic acid) and 24.6 ± 1.0 days (curcumin). The expected removal of target compounds due to ultimate biodegradation mechanism was estimated for a biological wastewater treatment system operated at a retention time of one day and percentages higher than 40% were calculated for sodium cyclamate, potassium sorbate and benzoic acid. Higher removal percentages are expected in full-scale Sewage Treatment Plants (STPs) due to the contribution of other mechanisms such as sorption to suspended solids, (bio)transformation and co-metabolic phenomena. Further biodegradation experiments should be conducted under different experimental conditions for the food additives that did not fulfill the requirements of the applied protocol. Future studies should also focus on the occurrence and fate of food colorants and natural sweeteners in full-scale STPs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
2-Hydroxybenzothiazole, 98%