Skip to Content
Merck
  • A small number of cholinergic neurons mediate hyperaggression in female Drosophila.

A small number of cholinergic neurons mediate hyperaggression in female Drosophila.

Proceedings of the National Academy of Sciences of the United States of America (2019-08-09)
Caroline B Palavicino-Maggio, Yick-Bun Chan, Claire McKellar, Edward A Kravitz
ABSTRACT

In the Drosophila model of aggression, males and females fight in same-sex pairings, but a wide disparity exists in the levels of aggression displayed by the 2 sexes. A screen of Drosophila Flylight Gal4 lines by driving expression of the gene coding for the temperature sensitive dTRPA1 channel, yielded a single line (GMR26E01-Gal4) displaying greatly enhanced aggression when thermoactivated. Targeted neurons were widely distributed throughout male and female nervous systems, but the enhanced aggression was seen only in females. No effects were seen on female mating behavior, general arousal, or male aggression. We quantified the enhancement by measuring fight patterns characteristic of female and male aggression and confirmed that the effect was female-specific. To reduce the numbers of neurons involved, we used an intersectional approach with our library of enhancer trap flp-recombinase lines. Several crosses reduced the populations of labeled neurons, but only 1 cross yielded a large reduction while maintaining the phenotype. Of particular interest was a small group (2 to 4 pairs) of neurons in the approximate position of the pC1 cluster important in governing male and female social behavior. Female brains have approximately 20 doublesex (dsx)-expressing neurons within pC1 clusters. Using dsx FLP instead of 357 FLP for the intersectional studies, we found that the same 2 to 4 pairs of neurons likely were identified with both. These neurons were cholinergic and showed no immunostaining for other transmitter compounds. Blocking the activation of these neurons blocked the enhancement of aggression.