Accéder au contenu
Merck

Sustained release of adipose-derived stem cells by thermosensitive chitosan/gelatin hydrogel for therapeutic angiogenesis.

Acta biomaterialia (2017-01-31)
Nai-Chen Cheng, Wei-Jhih Lin, Thai-Yen Ling, Tai-Horng Young
RÉSUMÉ

Adipose-derived stem cells (ASCs) secrete several angiogenic growth factors and can be applied to treat ischemic tissue. However, transplantation of dissociated ASCs has frequently resulted in rapid cell death. Therefore, we aimed to develop a thermosensitive chitosan/gelatin hydrogel that is capable of ASC sustained release for therapeutic angiogenesis. By blending gelatin in the chitosan thermosensitive hydrogel, we significantly enhanced the viability of the encapsulated ASCs. During in vitro culturing, the gradual degradation of gelatin led to sustained release of ASCs from the chitosan/gelatin hydrogel. In vitro wound healing assays revealed significantly faster cell migration by co-culturing fibroblasts with ASCs encapsulated in chitosan/gelatin hydrogel compared to pure chitosan hydrogels. Additionally, significantly higher concentrations of vascular endothelial growth factor were found in the supernatant of ASC-encapsulated chitosan/gelatin hydrogels. Co-culturing SVEC4-10 endothelial cells with ASC-encapsulated chitosan/gelatin hydrogels resulted in significantly more tube-like structures, indicating the hydrogel's potential in promoting angiogenesis. Chick embryo chorioallantoic membrane assay and mice wound healing model showed significantly higher capillary density after applying ASC-encapsulated chitosan/gelatin hydrogel. Relative to ASC alone or ASC-encapsulated chitosan hydrogel, more ASCs were also found in the wound tissue on post-wounding day 5 after applying ASC-encapsulated chitosan/gelatin hydrogel. Therefore, chitosan/gelatin thermosensitive hydrogels not only maintain ASC survival, they also enable sustained release of ASCs for therapeutic angiogenesis applications, thereby exhibiting great clinical potential in treating ischemic diseases. Adipose-derived stem cells (ASCs) exhibit great potential to treat ischemic diseases. However, poor delivery methods lead to low cellular survival or dispersal of cells from target sites. In this study, we developed a thermosensitive chitosan/gelatin hydrogel that not only enhances the viability of the encapsulated ASCs, the gradual degradation of gelatin also result in a more porous architecture, leading to sustained release of ASCs from the hydrogel. ASC-encapsulated hydrogel enhanced in vitro wound healing of fibroblasts and tube formation of endothelial cells. It also promoted in vivo angiogenesis in a chick embryo chorioallantoic membrane assay and a mice wound model. Therefore, chitosan/gelatin hydrogel represents an effective delivery system that allows for controlled release of viable ASCs for therapeutic angiogenesis.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Ethidium homodimer, suitable for fluorescence, ~90% (HPCE)