Accéder au contenu
Merck
  • Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.

Acidification due to microbial dechlorination near a trichloroethene DNAPL is overcome with pH buffer or formate as electron donor: experimental demonstration in diffusion-cells.

Journal of contaminant hydrology (2013-03-19)
Jo Philips, Nele Maes, Dirk Springael, Erik Smolders
RÉSUMÉ

Acidification due to microbial dechlorination of trichloroethene (TCE) can limit the bio-enhanced dissolution of TCE dense non-aqueous phase liquid (DNAPL). This study related the dissolution enhancement of a TCE DNAPL to the pH buffer capacity of the medium and the type of electron donor used. In batch systems, dechlorination was optimal at pH7.1-7.5, but was completely inhibited below pH6.2. In addition, dechlorination in batch systems led to a smaller pH decrease at an increasing pH buffer capacity or with the use of formate instead of lactate as electron donor. Subsequently, bio-enhanced TCE DNAPL dissolution was quantified in diffusion-cells with a 5.5 cm central sand layer, separating a TCE DNAPL layer from an aqueous top layer. Three different pH buffer capacities (2.9 mM-17.9 mM MOPS) and lactate or formate as electron donor were applied. In the lactate fed diffusion-cells, the DNAPL dissolution enhancement factor increased from 1.5 to 2.2 with an increase of the pH buffer capacity. In contrast, in the formate fed diffusion-cells, the DNAPL dissolution enhancement factor (2.4±0.3) was unaffected by the pH buffer capacity. Measurement of the pore water pH confirmed that the pH decreased less with an increased pH buffer capacity or with formate instead of lactate as electron donor. These results suggest that the significant impact of acidification on bio-enhanced DNAPL dissolution can be overcome by the amendment of a pH buffer or by applying a non acidifying electron donor like formate.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Acide formique, reagent grade, ≥95%
Sigma-Aldrich
Acide formique, ACS reagent, ≥96%
Sigma-Aldrich
Acide formique, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Formiate d'ammonium, reagent grade, 97%
Sigma-Aldrich
Trichloroethylene, ACS reagent, ≥99.5%
Sigma-Aldrich
Acide formique, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Formiate d'ammonium, ≥99.995% trace metals basis
Sigma-Aldrich
Formiate de sodium, ACS reagent, ≥99.0%
Sigma-Aldrich
Acide formique, ACS reagent, ≥88%
Sigma-Aldrich
Ammonium formate solution, BioUltra, 10 M in H2O
Sigma-Aldrich
Chlorine, ≥99.5%
Sigma-Aldrich
Potassium formate, ReagentPlus®, 99%
Sigma-Aldrich
Formiate de sodium, reagent grade, 97%
Sigma-Aldrich
Acide formique, ≥95%, FCC, FG
Supelco
Ammonium formate solution, 10 mM in H2O, suitable for HPLC
Supelco
Formiate d'ammonium, eluent additive for LC-MS, LiChropur, ≥99.0%
Sigma-Aldrich
Formiate de sodium, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Cesium formate, 98%
Sigma-Aldrich
Formiate de sodium, 99.998% trace metals basis
Sigma-Aldrich
Acide formique, JIS special grade, ≥98.0%
Sigma-Aldrich
Sodium formate-13C, 99 atom % 13C
Sigma-Aldrich
Calcium formate, BioUltra, ≥99.0% (T)
Sigma-Aldrich
Chlorine water, CP
Supelco
Trichloroethylene solution, certified reference material, 5000 μg/mL in methanol
Sigma-Aldrich
Acide formique solution, BioUltra, 1.0 M in H2O
Sigma-Aldrich
Formiate d'ammonium, BioUltra, ≥99.0% (calc. based on dry substance, NT)
Sigma-Aldrich
Potassium formate, BioUltra, ≥99.0% (NT)
Sigma-Aldrich
Thallium(I) formate, 97%
Supelco
Trichloroethylene, analytical standard, stabilized with 30 – 50 ppm Diisopropylamine
Sigma-Aldrich
Trichloroethylene, anhydrous, contains 40 ppm diisopropylamine as stabilizer, ≥99%