Accéder au contenu
Merck

para-Aminobenzoic acid is a precursor in coenzyme Q6 biosynthesis in Saccharomyces cerevisiae.

The Journal of biological chemistry (2010-07-02)
Beth Marbois, Letian X Xie, Samuel Choi, Kathleen Hirano, Kyle Hyman, Catherine F Clarke
RÉSUMÉ

Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable (13)C(6)-isotope of pABA (p- amino[aromatic-(13)C(6)]benzoic acid ([(13)C(6)]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[(13)C(6)]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [(13)C(6)]pABA or [(13)C(6)]4HB generate both (13)C(6)-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product (13)C(6)-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ(6). This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ(6) quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Chorismic acid from Enterobacter aerogenes, ≥80%
Sigma-Aldrich
Cyanomethyl (3,5-Dimethyl-1H-pyrazole)-carbodithioate, 95%