Accéder au contenu
Merck

Chemical genetic activation of the cholinergic basal forebrain hippocampal circuit rescues memory loss in Alzheimer's disease.

Alzheimer's research & therapy (2022-04-15)
Weilin Liu, Jianhong Li, Minguang Yang, Xiaohua Ke, Yaling Dai, Huawei Lin, Sinuo Wang, Lidian Chen, Jing Tao
RÉSUMÉ

The degeneration of the cholinergic circuit from the basal forebrain to the hippocampus contributes to memory loss in patients suffering from Alzheimer's disease (AD). However, the internal relationships between the acetylcholine (Ach) cycle and memory decline during the early stages of AD currently remain unknown. Here, we investigate the mechanisms underlying the activation of the cholinergic circuit and its impact on learning and memory using APP/PS1 mice models. Novel object recognition and Morris water maze tests were used to measure learning and memory function. Magnetic resonance spectrum (MRS) imaging was applied to longitudinally track changes in neurochemical metabolism in APP/PS1 mice aged 2, 4, 6, and 8 months. The number of neurons and the deposition of Aβ plaques were measured using Nissl, immunohistochemistry, and Thioflavin S staining. We then employed a chemogenetic strategy to selectively activate the cholinergic circuit from the medial septal nucleus (MS) and the vertical limb of the diagonal band nucleus (VDB) on the basal forebrain to the hippocampus. MRS and immunoblotting techniques were used to measure the neurochemical metabolism levels and cholinergic-related proteins, respectively. We found that the levels of choline (Cho) in the basal forebrain were markedly higher compared to other brain regions and that its decrease along with N-acetyl aspartate (NAA) levels in the hippocampus was accompanied by memory deficits in APP/PS1 mice aged 4, 6, and 8 months. In terms of pathology, we observed that the deposition of Aβ plaques gradually aggravated throughout the cerebral cortex and hippocampus in APP/PS1 mice aged 6 and 8 months, while no Aβ deposition was detected in the basal forebrain. In contrast, the activity of choline acetyltransferase (ChAT) enzyme in the basal forebrain was decreased at 6 months of age and the cholinergic neurons were lost in the basal forebrain at 8 months of age. In addition, the activation of the cholinergic circuit from the MS and VDB to the hippocampus using chemical genetics is able to improve learning and reduce memory impairment in APP/PS1 mice. Similarly, the levels of Cho in the basal forebrain; NAA in the hippocampus, as well as the expression of ChAT and vesicular acetylcholine transporter (vAchT) in the basal forebrain; and muscarinic acetylcholine receptor 2 (CHRM2) in the hippocampus all increased. These findings demonstrate that the neurochemical Cho and NAA of the cholinergic circuit can be used as biomarkers to enable the early diagnosis of AD. In addition, memory impairment in APP/PS1 mice can be attenuated using chemical genetics-driven Ach cycle activity of the cholinergic circuit.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Anticorps anti-choline acétyltransférase, Chemicon®, from goat
Sigma-Aldrich
Anti-VAChT (C-terminal) antibody produced in rabbit, IgG fraction of antiserum