Accéder au contenu
Merck

Piconewton-Scale Analysis of Ras-BRaf Signal Transduction with Single-Molecule Force Spectroscopy.

Small (Weinheim an der Bergstrasse, Germany) (2017-08-16)
Chae-Seok Lim, Cheng Wen, Yanghui Sheng, Guangfu Wang, Zhuan Zhou, Shiqiang Wang, Huaye Zhang, Anpei Ye, J Julius Zhu
RÉSUMÉ

Intermolecular interactions dominate the behavior of signal transduction in various physiological and pathological cell processes, yet assessing these interactions remains a challenging task. Here, this study reports a single-molecule force spectroscopic method that enables functional delineation of two interaction sites (≈35 pN and ≈90 pN) between signaling effectors Ras and BRaf in the canonical mitogen-activated protein kinase (MAPK) pathway. This analysis reveals mutations on BRaf at Q257 and A246, two sites frequently linked to cardio-faciocutaneous syndrome, result in ≈10-30 pN alterations in RasBRaf intermolecular binding force. The magnitude of changes in RasBRaf binding force correlates with the size of alterations in protein affinity and in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-sensitive glutamate receptor (-R)-mediated synaptic transmission in neurons expressing replacement BRaf mutants, and predicts the extent of learning impairments in animals expressing replacement BRaf mutants. These results establish single-molecule force spectroscopy as an effective platform for evaluating the piconewton-level interaction of signaling molecules and predicting the behavior outcome of signal transduction.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Millipore
BugBuster® Ni-NTA His•Bind® Purification Kit