Accéder au contenu
Merck

Capture of Mouse and Human Stem Cells with Features of Formative Pluripotency.

Cell stem cell (2020-12-04)
Masaki Kinoshita, Michael Barber, William Mansfield, Yingzhi Cui, Daniel Spindlow, Giuliano Giuseppe Stirparo, Sabine Dietmann, Jennifer Nichols, Austin Smith
RÉSUMÉ

Pluripotent cells emerge as a naive founder population in the blastocyst, acquire capacity for germline and soma formation, and then undergo lineage priming. Mouse embryonic stem cells (ESCs) and epiblast-derived stem cells (EpiSCs) represent the initial naive and final primed phases of pluripotency, respectively. Here, we investigate the intermediate formative stage. Using minimal exposure to specification cues, we derive stem cells from formative mouse epiblast. Unlike ESCs or EpiSCs, formative stem (FS) cells respond directly to germ cell induction. They colonize somatic tissues and germline in chimeras. Whole-transcriptome analyses show similarity to pre-gastrulation formative epiblast. Signal responsiveness and chromatin accessibility features reflect lineage capacitation. Furthermore, FS cells show distinct transcription factor dependencies, relying critically on Otx2. Finally, FS cell culture conditions applied to human naive cells or embryos support expansion of similar stem cells, consistent with a conserved staging post on the trajectory of mammalian pluripotency.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Monoclonal Anti-GAPDH antibody produced in mouse, clone GAPDH-71.1, purified from hybridoma cell culture
Sigma-Aldrich
Anticorps anti-triméthyl-histone H3 (Lys27), Upstate®, from rabbit
Sigma-Aldrich
Anti-OCT6 Antibody, clone KT110, clone KT110, from mouse