Accéder au contenu
Merck

PKB is a central molecule in the modulation of Na+-ATPase activity by albumin in renal proximal tubule cells.

Archives of biochemistry and biophysics (2019-09-29)
Diogo B Peruchetti, Andreson C Freitas, Vitor C Pereira, Juliana V Lopes, Christina M Takiya, Nilberto R F Nascimento, Ana Acacia S Pinheiro, Celso Caruso-Neves
RÉSUMÉ

Evidence points to a possible role of tubular sodium reabsorption in worsening renal injury. Proximal tubule (PT) albumin overload is a critical process in the development of tubule-interstitial injury (TII), and consequently in progression of renal disease. We studied the possible correlation between changes in albumin concentration in the lumen of PT with modification of Na+-ATPase activity. An albumin overload animal model and LLC-PK1 cells as a model of PT cells were used. Albumin overload was induced by intraperitoneal injection of BSA in 14-week-old male Wistar rats. An increase in sodium clearance, fractional excretion of sodium, proteinuria, ratio between urinary protein and creatinine, and albuminuria were observed. These observations indicate that there could be a correlation between an increase in albumin in the lumen of PTs and renal sodium excretion. We observed that the activity of both Na+-ATPase and (Na++K+)ATPase decreased in the renal cortex of an albumin overload animal model. Using LLC-PK1 cells as a model of PT cells, inhibition of Na+-ATPase activity was observed with higher albumin concentrations, similar to that observed in the animal model. The inhibition of protein kinase B by higher albumin concentration was found to be a critical step in the inhibition of Na+-ATPase activity. Interestingly, activation of the ERK1/2/mTORC1/S6K pathway was required for protein kinase B inhibition. This mechanism leads to a decrease in protein kinase C activity and, consequently to inhibition of Na+-ATPase activity. Taken together, our results indicate that the molecular mechanism underlying the modulation of PT Na+-ATPase activity by albumin overload involves activation of the ERK1/2/mTORC1/S6K pathway, which leads to inhibition of the mTORC2/PKB/PKC pathway. Our findings contribute to better understanding regarding handing of renal Na+ induced by albumin overload in the lumen of PTs and, consequently, in the progression of renal disease.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Triton X-100, laboratory grade
Millipore
membrane MF-Millipore, pore size 0.45 μm, filter diam. 293 mm, hydrophilic
Sigma-Aldrich
Protease Inhibitor Cocktail, Animal Component Free, for use with mammalian cell and tissue extract, DMSO solution