Accéder au contenu
Merck

PSD-95 Serine 73 phosphorylation is not required for induction of NMDA-LTD.

Scientific reports (2020-02-08)
Agata Nowacka, Małgorzata Borczyk, Ahmad Salamian, Tomasz Wójtowicz, Jakub Włodarczyk, Kasia Radwanska
RÉSUMÉ

PSD-95 is a major scaffolding protein of the post-synaptic density (PSD) of a glutamatergic synapse. PSD-95, via interactions with stargazin, anchors AMPA receptors at the synapse and regulates AMPAR currents. The expression of PSD-95 is regulated during synaptic plasticity. It is, however, unknown whether this regulation is required for induction of functional plasticity of glutamatergic synapses. Here, we show that NMDA-induced long-term depression of synaptic transmission (NMDA-LTD) is accompanied by downregulation of PSD-95 protein levels. Using pharmacologic and molecular manipulations, we further demonstrate that the NMDA-induced downregulation of PSD-95 depends on the activation of CaMKII and CaMKII-driven phosphorylation of PSD-95 serine 73. Surprisingly, neither CaMKII activity nor CaMKII-dependent phosphorylation of PSD-95 serine 73 are required for the expression of NMDA-LTD. These results support the hypothesis that synaptic plasticity of AMPARs may occur without dynamic regulation of PSD-95 protein levels.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
D-(+)-Glucose solution, 45% in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
N-Methyl-D-aspartic acid, ≥98% (TLC), solid
Sigma-Aldrich
Gey′s Balanced Salt Solution, liquid, sterile-filtered, suitable for cell culture
SAFC
Milieu essentiel minimum d′Eagle, with Earle′s Balanced Salts, without L-glutamine, liquid, sterile-filtered, suitable for cell culture
Sigma-Aldrich
Anticorps anti-PSD95 (protéine de densité post-synaptique 95), clone 7E3-1B8, clone 7E3-1B8, Chemicon®, from mouse