Skip to Content
Merck
  • Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories.

Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories.

Journal of biomedical materials research. Part B, Applied biomaterials (2016-04-22)
Yihan Xu, Chang-Soo Kim, David M Saylor, Donghun Koo
ABSTRACT

Poly (lactic-co-glycolic acid) (PLGA) copolymers have been broadly used in controlled drug release applications. Because these polymers are biodegradable, they provide an attractive option for drug delivery vehicles. There are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA polymers and concurrent drug release kinetics. This work is intended to provide a comprehensive and collective review of the physicochemical and physiological factors that dictate the degradation behavior of PLGA polymers and drug release from contemporary PLGA-based drug-polymer products. In conjunction with the existing experimental results, analytical and numerical theories developed to predict drug release from PLGA-based polymers are summarized and correlated with the experimental observations. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1692-1716, 2017.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 10,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 5,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA average Mn 10,000, lactide:glycolide 80:20
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA average Mn 5,000, lactide:glycolide 80:20
Sigma-Aldrich
N-Hydroxysuccinimide poly(ethylene glycol)-block-poly(lactide-co-glycolide), PEG average Mn 5000, PLGA average Mn 15000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 15,000, lactide:glycolide 80:20
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 2,000, PLGA average Mn 10,000, lactide:glycolide 80:20
Sigma-Aldrich
Poly(D,L-lactide-b-glycolide) lactide:glycolide 50:50, amine terminated, average Mn 5,000
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 15,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA Mn 20,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 2,000, PLGA average Mn 10,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide), PEG average Mn 2,000, PLGA Mn 3,000, lactide:glycolide 50:50
Sigma-Aldrich
Maleimide poly(ethylene glycol)-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA average Mn 15,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(lactide-co-glycolide)-fluorescein, lactide:glycolide 50:50, Mn 10,000-20,000
Sigma-Aldrich
Poly(lactide-co-glycolide)-Flamma Fluor near-IR, lactide:glycolide (50:50), Mn 20,000-30,000
Sigma-Aldrich
Poly(lactide-co-glycolide)-Rhodamine B, lactide:glycolide 50:50, Mn 10,000-30,000
Sigma-Aldrich
Poly(D,L-lactide-b-glycolide) lactide:glycolide 75:25, amine (dihydrazide) terminated, average Mn 12,000
Sigma-Aldrich
Thiol poly(ethylene glycol)-block-poly(lactide-co-glycolide), PEG average Mn 5,000, PLGA average Mn 15,000, lactide:glycolide 50:50
Sigma-Aldrich
Poly(D,L-lactide-co-glycolide)(50:50)-b-poly(ethylene glycol), 10k-2k