Skip to Content
Merck
  • Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy.

Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy.

Brain : a journal of neurology (2014-04-30)
Jianying Huang, Chongyang Han, Mark Estacion, Dymtro Vasylyev, Janneke G J Hoeijmakers, Monique M Gerrits, Lynda Tyrrell, Giuseppe Lauria, Catharina G Faber, Sulayman D Dib-Hajj, Ingemar S J Merkies, Stephen G Waxman
ABSTRACT

Sodium channel Nav1.9 is expressed in peripheral nociceptive neurons, as well as visceral afferents, and has been shown to act as a threshold channel. Painful peripheral neuropathy represents a significant public health challenge and may involve gain-of-function variants in sodium channels that are preferentially expressed in peripheral sensory neurons. Although gain-of-function variants of peripheral sodium channels Nav1.7 and Nav1.8 have recently been found in painful small fibre neuropathy, the aetiology of peripheral neuropathy in many cases remains unknown. We evaluated 459 patients who were referred for possible painful peripheral neuropathy, and confirmed the diagnosis of small fibre neuropathy in a cohort of 393 patients (369 patients with pure small fibre neuropathy, and small fibre neuropathy together with large fibre involvement in an additional 24 patients). From this cohort of 393 patients with peripheral neuropathy, we sequenced SCN11A in 345 patients without mutations in SCN9A and SCN10A, and found eight variants in 12 patients. Functional profiling by electrophysiological recordings showed that these Nav1.9 mutations confer gain-of-function attributes to the channel, depolarize resting membrane potential of dorsal root ganglion neurons, enhance spontaneous firing, and increase evoked firing of these neurons. Our data show, for the first time, missense mutations of Nav1.9 in individuals with painful peripheral neuropathy. These genetic and functional observations identify missense mutations of Nav1.9 as a cause of painful peripheral neuropathy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium chloride solution, 0.1 M
Sigma-Aldrich
Sodium chloride, JIS special grade, ≥99.5%
Sigma-Aldrich
Sodium chloride, SAJ first grade, ≥99.0%
Sigma-Aldrich
Sodium chloride solution, 1 M
Supelco
Sorbitol, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Sodium chloride solution, 0.85%
Sorbitol, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Sodium chloride, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
USP
Sorbitol, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Sodium chloride, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
D-Sorbitol, FCC, FG
Sigma-Aldrich
Sodium chloride, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
Sodium chloride-35Cl, 99 atom % 35Cl
Sigma-Aldrich
Sodium chloride, random crystals, optical grade, 99.9% trace metals basis
Supelco
Sodium chloride, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Sodium chloride, tested according to Ph. Eur.
Sigma-Aldrich
D-Sorbitol, BioUltra, ≥99.0% (HPLC)
Sigma-Aldrich
Sodium chloride solution, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
D-Sorbitol, liquid, tested according to Ph. Eur.
Sigma-Aldrich
D-Sorbitol, 99% (GC)
Sigma-Aldrich
Sodium chloride, 99.999% trace metals basis
Sigma-Aldrich
D-Sorbitol, ≥98% (GC), BioXtra
Sigma-Aldrich
D-Sorbitol, ≥98% (GC), for molecular biology
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
Sodium chloride, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Sigma-Aldrich
Sodium chloride, tablet
Sigma-Aldrich
D-Sorbitol, ≥98% (GC), BioReagent, suitable for cell culture, suitable for plant cell culture
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
D-Sorbitol, ≥98% (GC)