Skip to Content
Merck
  • Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer.

Expression of microRNA-15b and the glycosyltransferase GCNT3 correlates with antitumor efficacy of Rosemary diterpenes in colon and pancreatic cancer.

PloS one (2014-06-04)
Margarita González-Vallinas, Susana Molina, Gonzalo Vicente, Virginia Zarza, Roberto Martín-Hernández, Mónica R García-Risco, Tiziana Fornari, Guillermo Reglero, Ana Ramírez de Molina
ABSTRACT

Colorectal and pancreatic cancers remain important contributors to cancer mortality burden and, therefore, new therapeutic approaches are urgently needed. Rosemary (Rosmarinus officinalis L.) extracts and its components have been reported as natural potent antiproliferative agents against cancer cells. However, to potentially apply rosemary as a complementary approach for cancer therapy, additional information regarding the most effective composition, its antitumor effect in vivo and its main molecular mediators is still needed. In this work, five carnosic acid-rich supercritical rosemary extracts with different chemical compositions have been assayed for their antitumor activity both in vivo (in nude mice) and in vitro against colon and pancreatic cancer cells. We found that the antitumor effect of carnosic acid together with carnosol was higher than the sum of their effects separately, which supports the use of the rosemary extract as a whole. In addition, gene and microRNA expression analyses have been performed to ascertain its antitumor mechanism, revealing that up-regulation of the metabolic-related gene GCNT3 and down-regulation of its potential epigenetic modulator miR-15b correlate with the antitumor effect of rosemary. Moreover, plasmatic miR-15b down-regulation was detected after in vivo treatment with rosemary. Our results support the use of carnosic acid-rich rosemary extract as a complementary approach in colon and pancreatic cancer and indicate that GCNT3 expression may be involved in its antitumor mechanism and that miR-15b might be used as a non-invasive biomarker to monitor rosemary anticancer effect.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Carnosic acid from Rosmarinus officinalis, ≥91%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ≥98.0% (KT)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, SAJ special grade, ≥99.0%
Sigma-Aldrich
Ethylenediaminetetraacetic acid disodium salt solution, BioUltra, for molecular biology, pH 8.0, ~0.5 M in H2O
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, ≥99.0% (KT)