- Bromopropylate: induction of hepatic cytochromes P450 and absence of covalent binding to DNA in mouse liver.
Bromopropylate: induction of hepatic cytochromes P450 and absence of covalent binding to DNA in mouse liver.
Oral administration of benzilic acid ester-based acaricide bromopropylate at daily doses of 3, 15, 100, and 300 mg/kg body wt to young adult male Tif:MAGf mice for 14 days caused slightly increased liver weights in the high-dose group. A dose-dependent increase of the microsomal cytochrome P450 content was accompanied by elevated ethoxycoumarin O-deethylase, ethoxyresorufin O-deethylase, pentoxyresorufin O-depentylase, and total testosterone hydroxylase activities. When compared with mice treated in parallel with the model compounds for hepatic xenobiotic metabolizing enzyme induction, phenobarbitone, and 3-methylcholanthrene, the enzyme activity changes observed with bromopropylate largely equalled those expressed in phenobarbitone-treated mice. Immunochemical studies with monoclonal antibodies against rat liver cytochrome P450 isoenzymes of the gene families 1A, 2B, 3A, and 4A confirmed that bromopropylate is a phenobarbitone-type inducer in the mouse liver. Titration of liver microsomal suspensions with bromopropylate yielded Type I substrate binding spectra. The specific amplitude was increased 1.5-fold when microsomes from bromopropylate-treated mice (300 mg/kg body wt) were used instead of control microsomes, indicating the induction of cytochromes P450 catalyzing the oxidative metabolism of the test compound. Single oral administration of 300 mg/kg body wt [14C]bromopropylate to male mice, without or following pretreatment for 14 days with 300 mg/kg body wt unlabeled bromopropylate, gave no indication for DNA binding of the test compound in the liver. This excludes a genotoxic potential via covalent DNA modification. The results suggest that, in analogy to phenobarbitone, bromopropylate acts as a tumor promotor rather than a tumor initiator in the mouse liver.