Skip to Content
Merck
  • Low-energy electron scattering by cellulose and hemicellulose components.

Low-energy electron scattering by cellulose and hemicellulose components.

Physical chemistry chemical physics : PCCP (2012-12-19)
Eliane M de Oliveira, Romarly F da Costa, Sergio d'A Sanchez, Alexandra P P Natalense, Márcio H F Bettega, Marco A P Lima, Márcio T do N Varella
ABSTRACT

We report elastic integral, differential and momentum transfer cross sections for low-energy electron scattering by the cellulose components β-D-glucose and cellobiose (β(1 → 4) linked glucose dimer), and the hemicellulose component β-D-xylose. For comparison with the β forms, we also obtain results for the amylose subunits α-D-glucose and maltose (α(1 → 4) linked glucose dimer). The integral cross sections show double peaked broad structures between 8 eV and 20 eV similar to previously reported results for tetrahydrofuran and 2-deoxyribose, suggesting a general feature of molecules containing furanose and pyranose rings. These broad structures would reflect OH, CO and/or CC σ* resonances, where inspection of low-lying virtual orbitals suggests significant contribution from anion states. Though we do not examine dissociation pathways, these anion states could play a role in dissociative electron attachment mechanisms, in case they were coupled to the long-lived π* anions found in lignin subunits [de Oliveira et al., Phys. Rev. A, 2012, 86, 020701(R)]. Altogether, the resonance spectra of lignin, cellulose and hemicellulose components establish a physical-chemical basis for electron-induced biomass pretreatment that could be applied to biofuel production.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, contains no stabilizer
Sigma-Aldrich
Tetrahydrofuran, JIS special grade, ≥99.5%
Supelco
Tetrahydrofuran, Selectophore, ≥99.5%
Supelco
Tetrahydrofuran, analytical standard
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, anhydrous, ≥99.9%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, SAJ first grade, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Tetrahydrofuran, ACS reagent, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, ReagentPlus®, ≥99.0%, contains 250 ppm BHT as inhibitor
Sigma-Aldrich
Tetrahydrofuran, contains 250 ppm BHT as inhibitor, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9%
Sigma-Aldrich
Tetrahydrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
2-Deoxy-D-ribose, 97% (GC)
Sigma-Aldrich
2-Deoxy-D-ribose, BioReagent, suitable for cell culture