Skip to Content
Merck
  • Nonlinear behaviour of conduction and block in cardiac tissue with heterogeneous expression of connexin 43.

Nonlinear behaviour of conduction and block in cardiac tissue with heterogeneous expression of connexin 43.

Journal of molecular and cellular cardiology (2014-08-17)
Yann Prudat, Jan P Kucera
ABSTRACT

Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with predefined contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV first decreased significantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥60%, CV became comparable to that in 100% Cx43KO strands. Co-culturing Cx43KO and wild-type cells also resulted in significantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10-50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥60%, clusters of remaining wild-type cells acted as electrical loads that impaired conduction. For Cx43KO contents of 40-60%, conduction exhibited fractal characteristics, was prone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonlinear manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.

MATERIALS
Product Number
Brand
Product Description

Supelco
4-Methyl-N-ethyl-pentedrone (4-MEAP HCl) hydrochloride solution, 1 mg/mL in methanol (as free base), certified reference material, ampule of 1 mL, Cerilliant®
SKU
Pack Size
Availability
Price
Quantity