Skip to Content
Merck
  • Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly.

Interaction of lipopolysaccharides at intermolecular sites of the periplasmic Lpt transport assembly.

Scientific reports (2017-08-31)
Cedric Laguri, Paola Sperandeo, Kevin Pounot, Isabel Ayala, Alba Silipo, Catherine M Bougault, Antonio Molinaro, Alessandra Polissi, Jean-Pierre Simorre
ABSTRACT

Transport of lipopolysaccharides (LPS) to the surface of the outer membrane is essential for viability of Gram-negative bacteria. Periplasmic LptC and LptA proteins of the LPS transport system (Lpt) are responsible for LPS transfer between the Lpt inner and outer membrane complexes. Here, using a monomeric E. coli LptA mutant, we first show in vivo that a stable LptA oligomeric form is not strictly essential for bacteria. The LptC-LptA complex was characterized by a combination of SAXS and NMR methods and a low resolution model of the complex was determined. We were then able to observe interaction of LPS with LptC, the monomeric LptA mutant as well as with the LptC-LptA complex. A LptC-LPS complex was built based on NMR data in which the lipid moiety of the LPS is buried at the interface of the two β-jellyrolls of the LptC dimer. The selectivity of LPS for this intermolecular surface and the observation of such cavities at homo- or heteromolecular interfaces in LptC and LptA suggests that intermolecular sites are essential for binding LPS during its transport.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Galantide, ≥90% (HPLC)